
remote sensing  

Article

Thermal Infrared Hyperspectral Imaging for
Mineralogy Mapping of a Mine Face

Stephane Boubanga-Tombet 1,* , Alexandrine Huot 1, Iwan Vitins 2, Stefan Heuberger 2 ,
Christophe Veuve 3, Andreas Eisele 4, Rob Hewson 5 , Eric Guyot 1, Frédérick Marcotte 1

and Martin Chamberland 1

1 Telops Inc. 100-2600 Avenue St Jean-Baptiste, Québec, QC G2E 6J5, Canada;
alexandrine.huot@telops.com (A.H.); eric.guyot@telops.com (E.G.);
frederick.marcotte@telops.com (F.M.); martin.chamberland@telops.com (M.C.)

2 Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland;
iwan.vitins@gmail.com (I.V.); stefan.heuberger@erdw.ethz.ch (S.H.)

3 Jura Materials (CRH) Zurlindeninsel 1, 5000 Aarau, Switzerland; DStaiesse@juracime.ch
4 SphereOptics GmbH, Gewerbestrasse 13, 82211 Herrsching, Germany; aeisele@sphereoptics.de
5 Faculty of Geo-Information Science and Earth Observation (ITC), Department of Earth Systems Analysis

(ESA), University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; r.d.hewson@utwente.nl
* Correspondence: stephane.boubanga@telops.com or stephanealbon@hotmail.com; Tel.: +33-170-277-117

Received: 25 July 2018; Accepted: 17 September 2018; Published: 21 September 2018
����������
�������

Abstract: Remote sensing systems are largely used in geology for regional mapping of mineralogy
and lithology mainly from airborne or spaceborne platforms. Earth observers such as Landsat,
ASTER or SPOT are equipped with multispectral sensors, but suffer from relatively poor spectral
resolution. By comparison, the existing airborne and spaceborne hyperspectral systems are capable of
acquiring imagery from relatively narrow spectral bands, beneficial for detailed analysis of geological
remote sensing data. However, for vertical exposures, those platforms are inadequate options
since their poor spatial resolutions (metres to tens of metres) and NADIR viewing perspective are
unsuitable for detailed field studies. Here, we have demonstrated that field-based approaches that
incorporate thermal infrared hyperspectral technology with about a 40-nm bandwidth spectral
resolution and tens of centimetres of spatial resolution allow for efficient mapping of the mineralogy
and lithology of vertical cliff sections. We used the Telops lightweight and compact passive thermal
infrared hyperspectral research instrument for field measurements in the Jura Cement carbonate
quarry, Switzerland. The obtained hyperspectral data were analysed using temperature emissivity
separation algorithms to isolate the different contributions of self-emission and reflection associated
with different carbonate minerals. The mineralogical maps derived from measurements were found
to be consistent with the expected carbonate results of the quarry mineralogy. Our proposed approach
highlights the benefits of this type of field-based lightweight hyperspectral instruments for routine
field applications such as in mining, engineering, forestry or archaeology.

Keywords: thermal infrared; hyperspectral; Hyper-Cam; mineralogy mapping

1. Introduction

The exploration of geological outcrops is a field of high interest in geosciences especially for
collecting geospatial data, for geometric parameter measurements, as well as for mineralogy and
lithology mapping. Conventional field methods such as sedimentary logging and hand specimen
description are generally used to collect data from accessible areas. However, these traditional methods
only allow spot measurements at discrete points with relative difficulties in the spatial correlation
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of exposures on large cliffs. On-field detailed analysis of geochemical properties of mineralogy and
lithology are usually difficult unless the samples are analysed by laboratory methods. Therefore,
studying large outcrops with conventional field methods can be relatively time consuming, while
correlation and visualization of data from different parts of the outcrop remain very challenging.
Many of the geological outcrops used for detailed field studies are vertical cliff sections, and their
exploration by conventional methods raise additional challenges such as collecting samples on a high
vertical crumbly and unsafe wall face.

Different airborne or spaceborne approaches have been developed for non-contact geospatial
data collection and analysis. Airborne laser scanning (Light Detection and Ranging (LiDAR)) are,
for instance, commonly used for field measurements and aerial photogrammetry [1]. For vertical cliffs,
LiDARs associated with other ground-based instruments are commonly used in technical, industrial
and geological field applications [2–6]. The laser scanning method allows the reconstruction of the
shape of vertical outcrops as digital 3D models, also called virtual outcrop models. However, if LiDAR
provides a platform for visualization, geometric information and thus spatial correlation between
different sections, the extraction of the mineralogy and lithology is still limited to the single spectral
band of the LiDAR’s laser. The development of alternative ground-based approaches that could
provide reliable geochemical information in a non-contact manner that allows the analysis of complex
surface compositions would be of great interest in the geoscience community and for the mining
industry.

Remote sensing systems have been used in geology for regional mapping of mineralogy and
lithology from airborne or spaceborne platforms. Different geological problems have then been
investigated such as geomorphology and landform studies [7–10], structural and deformation
analysis [11–14], mineral [15–17] and hydrocarbon exploration [18–21] or environmental studies [22–24].
Earth observers such as Landsat, ASTER or SPOT are equipped with multispectral sensors, but they
present relatively poor spectral resolution (hundreds of nanometre-wide spectral bands). On the
contrary, the airborne and spaceborne hyperspectral systems such as AVIRIS, CASI, HyMAP (airborne)
or Hyperion (spaceborne) are capable of acquiring relatively narrow spectral bands (<10 nm wide).
High spectral resolution is very beneficial for detailed analysis of geological remote sensing data since
the commonly-encountered solid materials on the Earth’s surface have absorption features of about
20–40 nm wide [25,26]. Imaging spectroscopy (hyperspectral imaging) can therefore be applied to
enable quantitative analysis of the surface composition [27].

While imaging spectroscopy from airborne/spaceborne platforms is now a well-established
method applied to many geological problems, it has mostly been developed only in the Visible-Near
Infrared (VNIR, 0.4–1.4 µm) and Shortwave Infrared (SWIR, 1.4–3.0 µm) regions of the electromagnetic
spectrum. However, the reflectance spectral features measured in the VNIR and SWIR spectral
ranges are generally overtones and combination bands from fundamental absorption bands at longer
wavelengths, such as in the Longwave Infrared (LWIR, 8–12 µm) [22]. The single absorption bands
in the VNIR and SWIR spectral ranges are often very closely spaced so that the reflectance features
measured by common spectrometers in this spectral region are typically broad and/or suffer from
strong overlapping, which raises selectivity issues for mineral identification in some cases. Gagnon
et al. [28] have shown in an airborne remote sensing study that using LWIR improves selectivity in
certain situations since the spectral features associated with fundamental vibrations are generally
stronger and sharper than their overtones. The inherent self-emission associated with LWIR, also called
Thermal Infrared (TIR), under ambient conditions allows geological surveys in various weather and
illumination conditions. Solid targets such as minerals emit, but also reflect TIR radiation. Since the
emission and reflection occur simultaneously, they end-up mixed in the radiance measured at the
sensor level. Another major issue is comprised of different scattering processes (i.e., volume, weak
surface, strong surface [29]) that are wavelength-dependent for different minerals. To unveil the
spectral features associated with minerals from TIR measurements, the respective contributions of
self-emission and reflection in the measurement must be “unmixed” using Temperature-Emissivity
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Separation (TES) algorithms [30]. Nevertheless, for vertical exposures, airborne and spaceborne
platforms are inadequate options, and their spatial resolutions (metres to tens of metres) are unsuitable
for detailed study.

The use of LWIR remote sensing techniques to characterize mining environments offers many
benefits as it allows coverage of large areas in a very efficient way under various atmospheric and
illumination conditions. The signals of many minerals such as silicate (Si-O), feldspar (Al-O-Si) and
olivine ((Mg,Fe)2[SiO4]) are generally weak to give appreciable spectral features in the VNIR and
SWIR. Nonetheless, these minerals are likely to be encountered in many environments and regions
of the world as they result from the geological processes involving the first most abundant elements
encountered on Earth [31]. Most silicates, aluminosilicates and magnesium silicate minerals such as
quartz (SiO2), feldspar (Na-feldspar, K-feldspar and Ca-feldspar), serpentine (Mg-O-Si, antigorite,
chrysotile and lizardite) and olivine (e.g., fayalite and forsterite) have strong absorption and emission
bands in the LWIR spectral range. In addition, other commonly-encountered minerals such as
carbonates (e.g., calcite (CaCO3) and dolomite (CaMg(CO3)2), phosphates (e.g., apatite) and sulphates
(e.g., gypsum (CaSO4) and alunite) also have important spectral features in the LWIR. Therefore,
LWIR presents a method of choice for mining exploration. It is also worth stressing that the integration
of LWIR with Unmanned Aerial Vehicles (UAVs) platforms is expected to open doors toward highly
flexible surveys at a low cost of operation, thus meeting the recurrent wish of many actors in the
natural resources exploration and mining industry. The UAV remote sensing technology in LWIR is
still in its infancy as efficient LWIR sensors for UAVs are yet to be designed; some of the first modules
from Telops will be released in the very near future.

In this work, we conducted mineralogy and spectral mapping of vertical cliffs in a carbonate
quarry. This mine is predominantly composed of dolomite and calcite carbonate minerals. In order
to demonstrate the feasibility of hyperspectral proximal LWIR imaging to map calcite mineralogy as
feedstock within a cement plant’s limestone quarry, the Telops ground-based LWIR hyperspectral
imager was deployed for this field study. The main objective of this study is to characterize the relevant
carbonate mineralogy distribution of this mine. Our recently developed TES procedure [28] was then
used to retrieve geochemical properties and the relative mineral abundances of the open mine.

2. Description of the Study Area

The experiments were carried out in a Jura Cement quarry (http://www.juracement.ch/) at
Cornaux (47 deg 2 min 20 s N; 7 deg 25 min E, Switzerland). Figure 1 depicts an overview of the open
mine (Figure 1a), the Telops hyperspectral camera (Hyper-Cam) (Figure 1b) and photographs of the
vertical cliffs (Figure 1c). The Cornaux limestone mine, operated by Jura Cement, is a source of calcite
for cement manufacturing. Carbonate rocks or limestone are sedimentary rocks, mostly consisting
of calcite (CaCO3) and dolomite (CaMg(CO3)2). In nature, carbonate minerals exist in different
various chemical compositions such as siderite (FeCO3), magnesite (MgCO3), aragonite (CaCO3),
ankerite (CaFe(CO3)2), rhodochrosite (MnCO3), strontianite (SrCO3), cerussite (PbCO3), witherite
(BaCO3), malachite (Cu2CO3(OH)2) and azurite (Cu2(CO3)2(OH)2) [32–36]. However, the major
carbonate minerals expected at the Cornaux limestone quarry are calcite and dolomite. The presence
of other carbonate forms was also investigated using LWIR spectroscopy to evaluate the ability of the
Hyper-Cam to differentiate between different carbonate compositions.

http://www.juracement.ch/
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Figure 1. (a) Overview of the Jura Cement quarry; (b) the ground-based Telops Hyper-Cam instrument;
and (c) photograph of the vertical cliffs.

3. Background to LWIR Carbonate Spectroscopy

The fundamental vibration modes of a free carbonate ion (CO3
2+) [37] are shown in Table 1.

A carbonate ion consists of four atoms leading to six possible fundamental vibration modes.
The asymmetric stretch at 6.99 µm (ν3) and the asymmetric in-plane bend at 13.98 µm (ν4) are doubly
degenerated (two vibrations with the same frequencies). If the ν3 falls within a low atmospheric
transmission window, the other modes give pronounced absorption bands within the TIR region.
The exact position of the absorption band centre depends on the metal ions connected to the carbonate
ligand. Calcite (CaCO3) and dolomite (CaMg(CO3)2) can for example be distinguished due to a slight
shifting of the carbonate absorption features. In this work, the spectral behaviour of the carbonate
minerals was used to construct the lithological map of the investigated outcrop.

Table 1. Illustration of fundamental vibration modes of a free carbonate ion with motion vectors.

ν1 ν2 ν3 ν4

λ = 9.25 µm (1080 cm−1) λ = 11.36 µm (880 cm−1) λ = 6.99 µm (1430 cm−1) λ = 13.98 µm (715 cm−1)
Nondegenerate Nondegenerate symmetric Doubly degenerate Doubly degenerate

symmetric stretch out-of-plane bend asymmetric stretch asymmetric in-plane bend

4. Data and Methodology

4.1. Instrumentation

The Telops passive thermal infrared hyperspectral research instrument used for field
measurements in this work (see Figure 1b) is a lightweight and compact system suitable for
ground-based experiments (www.telops.com). The Hyper-Cam includes a Fourier Transform Infrared
(FT-IR) spectrometer that provides high spectral resolution and a closed cycle Stirling cooled Focal
Plane Array (FPA) detector of 320 × 256 pixels over a basic 6.4◦ × 5.1◦ field of view (FOV). The spectral

www.telops.com
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resolution is user-selectable from 0.25 cm−1–150 cm−1 (2.5 nm–1.5 µm at 10 µm and 1.5 nm–890 nm
at 7.7 µm) over the 1300 cm−1–855 cm−1 (7.7 µm–11.8 µm) spectral ranges with up to 1600 channels,
suitable in many geological remote sensing applications for detailed analysis of the absorption features.
The instrument also includes a GPS and is equipped with a high resolution digital camera. Visible
images are simultaneously recorded along with the infrared hyperspectral images (datacubes) and
the GPS positions of experimental locations. For field applications, the instrument can be powered by
truck batteries with an inverter, and the power consumption is 250 W peak and 170 W in steady state.

Three other laboratory-based instruments (X-ray diffractometer, MiDACemission and the Bruker
LWIR spectrometers) were also applied at ITC-University of Twente, for the detailed LWIR spectroscopy
and identification of the mineral species on 33 samples from Cornaux during this survey study
campaign. The result of this analysis will be presented in a follow-up paper. The ASD contact probe
spectrometer was used to measure some VNIR-SWIR spectra at different locations of the vertical walls.

4.2. Experimental Setup

For our experiments, the spectral resolution was set to 4 cm−1 (which represents a bandwidth
of about 40 nm at 10 µm) with an integration time of about 215 µs. In order to improve the signal to
noise ratio, about 20 datacubes were recorded per scene, and an acquisition time of 9 s per datacube
was used. The data transfer between the Hyper-Cam and a standard desktop was done using full
camera link connection. A de-magnifying 0.25× telescope (or field of view expander) was used,
resulting in an extended FOV of 25.6◦ × 20.4 ◦. The sensor was located at a 35-m distance from
the vertical cliff, leading to an effective pixel size of about 26 cm2/pixel. To facilitate the data
analysis, two reference plates (infragold and blackbody) were introduced in the investigated scenes
(see Figure 2a). The infragold plate exhibits excellent reflectance properties with a constant emissivity
value (ε ≈ 0.1) over the 7.7 µm–11.8 µm spectral range. This emissivity was used to estimate the
incident radiance (or downwelling radiance) from infragold represented image pixels, since it reflects
most of the incident radiation. The blackbody plate exhibits a rather high and constant emissivity
(ε ≈ 0.9) behaviour over the instrument spectral range. The signal measured on this blackbody plate at
the sensor position is used to estimate the atmospheric transmittance between the Hyper-Cam and the
investigated mine face.

Figure 2. Photograph (a) and broadband infrared image (b) of Wall #1 obtained with the Telops
Hyper-Cam. We intentionally placed blackbody and infragold plates on the investigated wall to
facilitate the calculations of temperature-emissivity separation. The infrared image represents a portion
of the wall of about 13 m (vertical) by 16 m (horizontal).

4.3. Data Processing

The raw datacubes contain one interferogram per pixel, which have been recorded simultaneously
on the FPA by the Hyper-Cam. Fast Fourier transform is then performed to get spectroscopic
information on each pixel. Automated radiometric calibration is performed on the raw (in digital
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numbers) datacubes using two integrated blackbodies with different temperatures. For the experiments
reported in this paper, the blackbodies were set to 20 ◦C and to 40 ◦C, and the spectral radiance
(calibrated data) and the raw data were saved as output data. We used the averaged spectral radiance
data (over 20 acquisitions) with a noise equivalent spectral radiance of about 57 nW/cm2.sr.cm−1 to
conduct Temperature Emissivity Separation (TES). The retrieval of emissivity spectra is the final goal
of the data processing chart, as emissivity is related to the material inherent composition. Spectral
unmixing of the emissivity data was then carried out using the spectral signatures of selected minerals
obtained from spectral libraries such as ECOSTRESS [38].

4.4. Temperature and Emissivity Calculation.

Unlike a blackbody, the rocks present in the investigated scene selectively absorb/emit the incident
energy as a function of wavelength. The ratio of their radiated energy to that radiated by a blackbody
at the same wavelength and temperature is called the spectral emissivity. Analogous to spectral
reflectivity in the VNIR-SWIR wavelength region, spectral emissivity describes the materials’ inherent
characteristics in the TIR. The spectral emissivity is, together with the thermodynamic temperature,
among the fundamental parameters needed to be derived from the spectral radiance datacube, in order
to characterize the hyperspectral TIR remote sensing data fully. In practice, the thermodynamic
temperature of the investigated target must be known or assumed in order to calculate its spectral
emissivity. Temperature emissivity separation procedures are therefore commonly conducted on the
measured TIR hyperspectral data to retrieve the thermodynamic temperature and spectral emissivity
maps of the investigated scene separately with the following equation.

L(T, λ) = (Lt(T, λ)ε(λ) + Dw(λ)[1 − ε(λ)])τatm(λ) + [1 − τatm(λ)]Latm(T, λ) (1)

We conducted TES by solving Equation (1) where L(T,λ) is the at-sensor radiance, ε(λ) the
target’s spectral emissivity, Dw the effective downwelling radiance upon the target, Lt(T,λ) the target’s
self-emission (which is a function of its thermodynamic temperature as described by the Planck
equation), τatm(λ) is the atmospheric transmittance between the target and sensor, Latm(T,λ) the
radiance associated with TIR self-emission of all atmospheric components, T is the thermodynamic
temperature and λ is the wavelength.

Different methods are commonly used to conduct TES such as: reference channel [39], blackbody
fit [40], maximum spectral temperature [40] and spectral smoothing [40–42]. Within the reference
channel methods, assumptions are made that the emissivity is ε = 1 for some wavelengths in the
spectral region under consideration. The temperature at those wavelengths is then calculated along
with the emissivity for the rest of the spectra. However, no realistic material has an emissivity of ε = 1
at any wavelength; therefore, this approach usually results in a shift upward of the calculated data.
Unless the maximum emissivity of a specific material in the investigated scene is known, the outputs
of this method will never be absolute [40].

In this work, we used reference plates in the investigated scene, which were placed at the mine
face (Figure 2), to facilitate the solving of the radiative transfer model. By using the radiance measured
at the sensor level with the blackbody (L1) or infragold (L2) plate as a target, knowing the temperatures
of the plates and the atmospheric temperature, we calculate the atmospheric transmittance and the
downwelling radiance as described in the above Experimental Setup Section as follows:

τatm =
L1 − Latm

LBBε1 + Dw(1 − ε1)− Latm
(2)

Dw =
L2 − (1 − τatm)Latm − LIGτatmε2

(1 − ε2)τatm
(3)

where LBB and LIG are the blackbody and infragold self-emission described by the Planck equation
and ε1 and ε2 are their respective emissivities. We therefore solve Equation (1) for all the image pixels
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of the investigated scene using the τatm obtained on the blackbody plate and Dw obtained on the
infragold plate. We also used another different TES algorithm that implements an in-scene atmospheric
correction using the calculation of Equation (1) with MODTRAN [43] to correct for downwelling
radiance, and the results were similar to those presented in this paper.

5. Results

Hyperspectral imaging of two vertical walls in the open mine were conducted with the main
objective of characterizing the mineralogy distribution of the mine. Figure 2 shows a photograph of
one of the walls referred to as Wall #1 in this paper (Figure 2a). A typical broadband infrared image
associated with the hyperspectral data is shown in Figure 2b. This temperature map was obtained first
by converting the calibrated spectral radiance datacube into the brightness temperature datacube using
an inverted Planck function for each wavenumber. The wavelength dependency was then removed
by computing within the brightness temperature datacube, the mean value of all wavenumbers data
at each pixel. We observed large variations of radiometric temperature (about 13 K), most likely
caused by emissivity and/or thermodynamic temperature differences of the rocks and other elements
in the investigated scene. It should also be noted that during the surveying, some of the mine face
areas were damp and therefore likely to have an evaporative cooling effect, as well as a blackbody
moisture response. Moisture significantly affects the TIR remote sensing experiments, leading to
an overestimation of the thermodynamic temperature and a shift upward of the emissivity values.
Measurements of the humidity of the different elements in the investigated scene (when possible)
were sometimes needed to correct its contribution. The radiometric temperature map obtained by
summing over the all spectral range of the detector was similar to the data one could get from a simple
broadband infrared camera. However, the spectroscopic information and geochemical distribution of
the mineralogy and lithology cannot be extracted from this type of broadband image. We therefore
analysed the wavelength-dependent data.

The thermodynamic temperature map obtained from TES calculations is shown in Figure 3a.
We obtained, as previously reported [28], higher values of temperature than their corresponding
brightness temperature. This is expected since the downwelling and atmospheric contribution have
been addressed in the TES calculation procedure. When comparing the two temperature maps
(Figures 2b and 3a), one can clearly see that the temperature differences of the rocks (and the other
elements in the investigated wall) show a higher contribution in the thermal contrast observed in
Figure 2b as compared to their emissivity variation. Nevertheless, in the emissivity maps depicted
in Figure 3b (λ = 11.2 µm) and Figure 3c (λ = 11.3 µm), clear spectral dependence can be seen on
the outcrop. Those emissivity maps highlight the spectral contrast associated with the geochemical
distribution of the mineralogy within the carbonate mine face.

Figure 3. Cont.
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Figure 3. Thermodynamic temperature (a) and emissivity maps of Wall #1 of the investigated outcrop
at λ = 11.2 µm (b) and λ = 11.3 µm (c) obtained after performing temperature-emissivity separation.
Seven selected locations (of one-pixel size) marked with cross mark X1 (upper left of the seven X-marks
with numbers proceeding as 1–7 in a clock-wise direction) on (b) are discussed later below. The images
represent a portion of the wall of about 13 m (vertical) by 16 m (horizontal).

The spectral emissivity of seven selected locations (one-pixel size) on Wall #1 are shown
in Figure 4a. Their positions relative to the whole investigated cliff are labelled in Figure 3b.
Clear location-dependent spectral variations can be seen, most likely related to the geochemical
distribution of the mineralogy of the cliff. The narrow spectral feature observed in all pixel locations
around 850–925 cm−1 (11.765–10.811 µm) and the broader feature observed in Pixel #1 and Pixel #2
around 950–1150 cm−1 (10.526–8.696 µm) are likely associated with carbonate minerals. The series of
sharp peaks in the 1200–1300 cm−1 (8.333–7.692 µm) spectral range is associated with atmospheric
absorption (water vapour).

Figure 4. (a) The LWIR spectral emissivity of seven selected locations in the vertical cliff and (b)
the LWIR reference spectra of different carbonate minerals obtained from the ECOSTRESS spectral
library database [38]. The VNIR-SWIR ASDcontact probe spectra measured at random positions of
the mine face (c) and VNIR-SWIR reference spectra of different carbonate minerals obtained from the
ECOSTRESS spectral library database (d).
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6. Discussion

In order to estimate the carbonate mineralogy composition of the mine face, the TIR spectral
emissivity data derived from measurements with the Telops Hyper-Cam (Figure 4a) were compared to
the library’s reference spectral emissivity data of different carbonate minerals. The carbonate minerals
likely to be present in the mine face are calcite and dolomite. However, for the spectral library matching
approach used in this work, we included other carbonate minerals (malachite, azurite, smithsonite,
siderite, rhodochrosite and magnesite), as they present strong emissivity spectral features in the same
spectral regions as observed in the experiments: 850–925 cm−1 (11.765–10.811 µm) and 950–1150 cm−1

(10.526–8.696 µm) (see Figure 4a,b). Longwave infrared spectral signatures of carbonates can also be
found in [44]. The ECOSTRESS spectral library database [38] (previously known as the ASTER library)
was used for the identification. The VNIR-SWIR ASD contact probe spectra measured at random
positions of the mine face depicted in Figure 4c were also used for identification of the mineralogy and
comparing the results obtained in the TIR region. The measured VNIR-SWIR reflectance spectra were
compared to reference reflectance spectra (from the ECOSTRESS spectral library database) of calcite,
dolomite and other carbonate minerals having reflectance spectral features in the same bands with the
measured spectra: magnesite, smithsonite, siderite, rhodochrosite (Figure 4d). We also conducted XRD
analysis to complement this work and extend the mineralogy identification to possible non-carbonate
mineral constituents that will be presented in a follow-up paper.

Each spectrum obtained on the seven locations depicted in Figure 4a contains a continuum
component and individual features. The continuum is the background that can be determined by
fitting a convex envelope connecting local maxima. The spectrum can then be normalized in order to
remove the continuum component. Spectral feature fitting approaches and comparison of measured
spectra with library spectra are based on continuum removed pixel spectra [45,46]. We performed
detailed analysis of absorption features, such as the determination of the position, the absorption
depth and Full Width at Half Maximum (FWHM), using continuum removed spectra. The tables
below summarize the wavenumber positions, the FWHM and the depth of the emissivity peaks of
the seven selected locations of the cliff (Table 2) and that of the relevant reference carbonate minerals
(Figure 4b) in the TIR region (Table 3).

Table 2. Positions, FWHM and depth of the emissivity absorption features shown in Figure 4a
representing the seven selected locations in the investigated cliff.

Pixel 1/λ1 (cm−1) FWHM1 (cm−1) Depth1 1/λ2 (cm−1) FWHM2 (cm−1) Depth2

#1 885.62 ± 0.86 17.75 ± 4.01 0.092 1033.16 ± 1.41 140.82 ± 13.03 0.064
#2 884.45 ± 0.78 14.56 ± 3.65 0.096 1033.44 ± 2.03 74.57 ± 9.27 0.059
#3 895.35 ± 0.66 18.11 ± 3.09 0.082
#4 887.47 ± 0.65 47.12 ± 6.09 0.136
#5 889.57 ± 0.63 29.44 ± 4.83 0.109
#6 892.24 ± 0.69 32.10 ± 5.22 0.141
#7 892.48 ± 1.32 10.53 ± 5.37 0.033

Table 3. Positions and FWHM of the emissivity absorption features shown in Figure 4b representing
the seven carbonate mineral signatures obtained from the ECOSTRESS spectral library database [38]
that likely contribute to the total measured emissivity.

Mineral 1/λ1 (cm−1) FWHM1 (cm−1) 1/λ2 (cm−1) FWHM2 (cm−1)

Malachite 819.99 ± 0.42 11.09 ± 1.57 1030.07 ± 0.88 82.33 ± 6.79
Azurite 817.86 ± 0.72 8.36 ± 3.04 1031.05 ± 0.73 74.74 ± 3.14

Dolomite 892.20 ± 0.304 22.15 ± 4.45
Calcite 883.58 ± 0.26 23.93 ± 8.69 1080.18 ± 1.28

Smithsonite 876.17 ± 0.59 24.52 ± 5.72
Siderite 875.88 ± 0.46 18.19 ± 3.87 1144.61 ± 1.54

Rhodochrosite 875.01 ± 0.48 6.86 ± 3.99
Magnesite 906.03 ± 0.398 30.07 ± 1.84



Remote Sens. 2018, 10, 1518 10 of 15

Semi-quantitative analysis of the mineral abundances was carried out from the measured spectra
by analysing the intensity of the emissivity spectral bands [47]. In some cases, some minerals dominate
the spectra measured on a pixel location and hamper the identification of other constituent minerals that
have less pronounced emissivity properties. However, generally, a mineral with a unique emissivity
signature can be correlated to a specific lithological unit, which can be used to trace and map the
lithology. The locations associated with Pixels #1 and #2 appear to have similar mineralogy content,
most likely calcite, although the spectral features also suggest the unlikely Cu-bearing malachite and
azurite carbonate forms. The emissivity spectra obtained at the location of Pixel #3 clearly matches
the spectrum of pure dolomite. On the contrary, the locations of Pixels #4, #5 and #6 situated on the
ground level of the vertical cliff show relatively broader spectra resulting from a mixture of calcite and
dolomite as major minerals. Finally, the location of Pixel #7 shows a weak absorption peak around
892.48 cm−1, most likely indicating the presence of dolomite, though the spectral feature obtained there
is not very pronounced. The smithsonite, siderite, rhodochrosite and magnesite minerals are unlikely
to be present within the investigated scene since their spectral features at 876.17 cm−1 (11,413.31 nm),
875.88 cm−1 (11,417.09 nm), 875.01 cm−1 (11,428.44 nm) and 906.03 cm−1 (11,037.16 nm), respectively,
are approximately 10 cm−1 offsets from the closest and the farthest spectral absorption feature observed
in the measured TIR spectra.

The spectral curves obtained from geological outcrops are generally influenced by mineralogy
mixture, particle size, view and surface roughness. The depth of the spectral feature indicates the
amount of light absorbed by the mineral and is therefore related to the mineral abundance [47,48].
By comparing the depths of the two features of the emissivity spectra related to the locations of Pixels #1
and #2 (Table 2), we identify calcite as the more abundant mineral on those locations. The depths of
the emissivity spectral features observed on the locations of Pixels #4, #5 and #6 are larger than that of
pure dolomite observed on Pixel #3, most likely due to the fact that the former are composed of mixed
rocks or solid solution series [44].

The spectral library matching approach was also used on the VNIR-SWIR spectra measured
at random spots of the open mine pit with the ASD contact probe spectrometer (Figure 4c).
The comparison of measured VNIR-SWIR spectra with the reference spectra of the ASTER library
(Figure 4d) indicates the presence of a dolomite-calcite (and possible magnesite) mix at the mine face.
However, more accurate XRD analysis (results will be presented in a follow-up paper) only identifies
calcite and dolomite. The mineral identification from VNIR-SWIR and LWIR is very consistent;
nevertheless, the discrimination of the different carbonate spectral signatures was better in the LWIR
compared to VNIR-SWIR.

In remote sensing, spectral mixtures can be found in four different types: molecular mixture, linear,
intimate and mixture due to coating [47]. The spectrum of optically separated rocks not subjected
to multiple scattering between them is usually of a linear mixture type also referred to as a spatial
mixture. The spectrum resulting from the intimate type of mixture is a complex non-linear combination
of spectra due to multiple scattering between rocks that are in intimate contact. A molecular mixture
usually results in band shifts that occur when molecules are mixed together. Finally, when a rock is
coated with different layers of different optical thicknesses, each layer acts as an independent scatterer,
and the resulting signal is a spectral mixture due to coating. In this work, optical separation of different
rocks can be assumed; therefore, since the spectrum of each mineral, also named as an end-member
spectrum, is known, the fraction of each component present in a pixel can be determined by linear
spectral unmixing algorithms [28,49,50].

Figure 5a depicts the spectral mineral map of Wall #1 of the investigated outcrop visualized in
RGB with red, green and blue associated with the following spectral bands (in cm−1) B = [869–879],
R = [879–889], G = [889–900]. Our data show the top side of the wall is dominantly composed of calcite.
By comparing this spectral mineral map and the photograph shown in Figure 2a, good coincidence
can be seen between grey-darkish-coloured rocks on the top part of the wall in the visible image and
the calcite distribution in the lithography map. The middle part of the wall appears to be composed of
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dolomite, while the rocks near the ground level are mainly a mix of calcite and dolomite, resulting from
the combined fallen debris at the base of the mine face. The other areas correspond to unstructured
emissivity or undetermined components.

The spatial average spectral emissivity on three regions where calcite, dolomite and mixtures are
located is shown in Figure 5b. Calcite appears to be more abundant in the mixture in the selected region
(shown with red marked). The reference spectral emissivity of the calcite and dolomite obtained from
the library database [38] is depicted in Figure 5c. One can see a good match between the measured
spectra and the position of absorption peaks of the library spectral emissivity.

Figure 5. (a) Spectral mineral map of Wall #1 of the investigated outcrop in RGB with red, green and
blue associated with the following spectral bands (in cm−1) B = [869–879], R = [879–889], G = [889–900];
(b) averaged spectral emissivity on three different regions of the wall; (c) the reference spectral
emissivity of calcite and dolomite obtained from the library database [38].

The data collected on the second wall of the investigated outcrop shown in Figure 6 are consistent
with the results obtained on the first wall. The relative position of the two walls can be seen on the
panoramic photograph depicted in Figure 6a. A visible image of Wall #2 obtained with the Hyper-Cam
high resolution digital camera is shown in Figure 6b. The spectral mineral map of this wall (Figure 6c)
shows dolomite near the ground level. The calcite is mainly present in the regions of the wall where
the rocks appear to be darker compared to the lighter dolomite-bearing regions, consistent with the
observations of Wall #1. The averaged spectral emissivity on dolomite, calcite and mixture regions
(Figure 6d) shows a slope (continuum component) distortion most likely associated with stronger
atmospheric absorption feature as compared to Figure 5b; see the water absorption lines around
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1200–1300 cm−1 (8.333–7.692 µm) in the two figures. Indeed, the data of the two walls were collected
on two different days, which mirrored the two different atmospheric conditions.

Figure 6. (a) Photograph of the investigated outcrop showing the two walls of vertical cliff studied in
this work; (b) image of Wall #2 obtained with the Telops Hyper-Cam high resolution visible digital
camera; (c) spectral mineral map of Wall #2 of the investigated outcrop in RGB with red, green and
blue associated with the following spectral bands (in cm−1) B = [869–879], R = [879–889], G = [889–900];
(d) averaged spectral emissivity on three different regions of the wall.

7. Conclusions

We have demonstrated that field-based TIR hyperspectral technology, integrated with visible
photographs, enables an efficient mapping of mineralogy and, therefore, lithology. This technique
offers a significantly improved interpretation of mine face composition, normally difficult to observe
and quantify with conventional mapping methods. Temperature emissivity separation was successfully
conducted on hyperspectral data of a carbonate mine face exposure obtained using Telops Hyper-Cam.
Spectral emissivity unmixing was then carried out on the obtained datacube signatures assuming
known geological components expected to be found in the quarry. This resulted in an improved
qualitative and quantitative analysis of the geochemical properties of the mine face, useful for quality
control of its feedstock. The carbonate mineralogical maps obtained are consistent with the variation
within the Jura Cement Limestone Quarry. The obtained end-member spectra are in agreement with
published spectral libraries for carbonate. The high spectral and spatial resolution of the Telops
Hyper-Cam spectrally resolves very similar minerals and gives highly detailed mineralogical maps.
Our results highlight the benefits of this type of lightweight hyperspectral instrument for routine field
applications such as in mining, engineering, forestry or archaeology, where the spatial analysis of
mineral and chemical distribution is essential.
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