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bDepartment of Geology and Geological Engineering, Université Laval, 1065, av. de la
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Abstract

The developments in hyperspectral technology in different applications are known

in many fields particularly in remote sensing, airborne imagery, mineral identi-

fication and core logging. The automatic mineral identification system provides

considerable assistance in geology to identify mineral automatically. Here, the

proposed approach addresses an automated system for mineral (i.e. pyrope,

olivine, quartz) identification in the long-wave infrared (7.7µm to 11.8µm -

LWIR) ground-based spectroscopy. A low-rank Sparse Principal Component

Analysis (Sparse-PCA) based spectral comparison methods such as Spectral An-

gle Mapper (SAM), Spectral Information Divergence (SID), Normalized Cross

Correlation (NCC) have been used to extract the features in the form of false

colors composite. Low-rank Sparse-PCA is used to extract the spectral refer-

ence which and showed high similarity to the ASTER (JPL/NASA) spectral

library. For decision making step, two methods used to establish a comparison
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between a kernel Extreme Learning Machine (ELM) and Principal Component

Analysis (PCA) kernel K-means clustering. ELM yields classification accuracy

up to 76.69% using SAM based polynomial kernel ELM for pyrope mixture,

and 70.95% using SAM based sigmoid kernel ELM for olivine mixture. This

accuracy is slightly lower as compared to clustering which yields an identifi-

cation accuracy of 84.91% (NCC) and 69.9% (SAM). However, the supervised

classification significantly depends on the number of training samples and is

considerably more difficult as compared to clustering due to labeling and train-

ing limitations. Moreover, the results indicate considerable similarity between

the spectra from low rank approximation from the spectra of pure sample and

the spectra from the ASTER spectral library.

Keywords: Comparison spectral analysis, Hyperspectral infrared

image analysis, Mineral identification, Sparse principal component

analysis, Extreme learning machine, Principal component analysis

based K-means clustering.

This manuscript is an author version and the main article can be

found in Infrared Physics Technology Journal [1]. https://doi.org/
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1. Introduction

Technological developments in different wavelength bands in spectroscopy5

have created interesting opportunities and provide spectral and spatial infor-

mation from the surface of materials. The automatic/semi-automatic/non-

automatic approaches in mineral identification extensively depend on this in-

formation. The proposed approach is a ground-based spectroscopy system for

automatic mineral identification using extreme learning machine (ELM). It uses10

spectral comparison to create a false color composite, and the spectral reference

is calculated by applying low rank sparse principal component analysis (Sparse-

PCA) of the spectra from a mineral’s sample. Spectrometric imagery provides
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information that can be exclusively used in geological and mineralogical fields

[2, 3]. Several spectral databases [e.g. advanced space-borne thermal emission15

and reflection radiometer (ASTER) [4]] have been widely used as references for

spectral analysis and contain a collection of spectral libraries including sam-

ples in laboratory or field conditions. The signature of natural materials in such

spectral libraries provides opportunities for data mining techniques to be applied

to imagery. The spectra from these libraries can serve as reference or ground20

truth to enable comparison. Recent hyperspectral methods focus on spectral

techniques, such as estimating abundance of quartz and clays in oil sand [5]

or identifying minerals for mapping [6]. These methods typically compare the

targeted spectra in the hyperspectral images with the spectra of minerals in

libraries (Cloutis [7] and Plaza et al. [8]). Numerous spectral comparison ap-25

proaches have been developed and applied for spectral analysis such as SAM

and NCC, which are extensively used in the field [4]. For enhanced spectral

representation, several features that deal with wavelength position and spectral

absorption have been developed.

This study aimed to propose ground-based mineral identification deploying su-30

pervised and unsupervised approaches similar to airborne imagery [9, 10, 11] and

core logging [12, 13, 14]. The absorption information (signature) and wavelength

position depend on the mineral composition and changes based on geochemical

information, which can lead to mineral identification [15, 16, 17]. The local

and global minima or maxima (extrema) in different wavelengths can be used35

to distinguish minerals, and this method is becoming a commodity for mineral

identification (e.g. effect of lichen in mineral identification [6]).

Short-wave infrared band range is relatively confined [18, 19, 20] compared with

other bands, such as visible and near infrared and long-wave infrared (LWIR).

This limitation creates difficulties for precise determination of extrema and com-40

parative analysis [9]. Selection of a spectral representative for the identification

of pure minerals may involve prior knowledge of physical (e.g. roughness and

particle size) and chemical properties of the material, its surface and illumina-

tion geometry of measurement (i.e. background continuum, particular albedo
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and absorption features) ([21, 22, 23]). Thus, some research is necessary to45

minimize such effects [21, 24]). Certain approaches have a suitable shape of the

known continuum spectra and attempt to fit either locally or entirely in linear

or curved baseline approaches ([21, 25]). Spectral comparison methods such as

SAM, spectral feature fitting [26] and Tetracorder ([24]) can be applied after

continuum removal. The data are sensitive to a variety of factors including the50

non-uniform thermal property and background reflection of minerals, angle of

acquisition and several other parameters. Continuum removal provides a cor-

rection to the spectra and prepares the spectra for comparison. This method

minimizes the influence of such parameters on the data by removing the con-

tinuum from the spectrum. In this study, we studied a set of pure and mixed55

mineral grains and active thermography, which involves placing a heating source

in front of the hyperspectral camera to illuminate samples. Continuum removal

uses non-negative factor analysis to find the best spectral representative from

downwelling radiation. The analysis of mineral identification uses Sparse-PCA

to find the spectra reference and compares findings with the ASTER spectral60

library [4]. Spectral comparison techniques use these references and create false

colors; ultimately, segmentation of the mineral grains is conducted. The pro-

posed approach uses hyperspectral imaging in the wavelength range of 7.7 µm

to 11.8 µm (LWIR) for certain mineral grains in laboratory conditions via a

FTIR hyperspectral camera equipped with a magnifying lens to improve spatial65

resolution. The remainder of the paper is organized as follows. In Section 2,

we introduce the methodology and explain how continuum removal and seg-

mentation processes are performed. Section 3 describes the experimental and

simulation results. We discuss the challenges and advantages of the approach

in Section 4. Finally, we conclude and describe future work in Section 5.70

2. Method

Here, an automated mineral identification for ground-based spectroscopy is

proposed via supervised (ELM) and unsupervised approaches (clustering). To
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Figure 1: The scheme of the proposed algorithm.

obtain the classification attributes, several spectral comparison techniques were

used (i.e. SAM, SID and NCC). To apply spectral comparison techniques, we75

employed Sparse-PCA to extract the spectral references from single mineral

samples and even compared them with ASTER spectral library.

2.1. Spectral Comparison techniques

Spectral Angle Mapper (SAM) calculates the angle between the reference and

targeted spectra as an error [27, 28], which represents their physical composition80

property. It uses the n − D angle to match the targeted spectra to reference

spectra. The spectral references for using SAM usually involve spectral libraries,

whereas the proposed approach extracted references directly from the spectra

of pure samples (such as those presented here). The amount of error generated

by SAM represents the significant difference between mineral compositions [27].85

Spectral information divergence (SID) is another spectral comparison tech-

nique. x = (x1, x2, . . . xL)T represents the pixel spectra, Xl component, in

hyperspectral data cube, and it is considered a probability distribution aim to

estimate the correlation between the spectra (targeted and reference spectra).
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y = (y1, y2, . . . yL)T is the additional pixel vector that has the probability dis-90

tribution of q = {ql}Ll = 1 and qj =
yj∑L

l=1

yl and composes SID through the

following formula:

SID(x, y) = D(x||y) +D(y||x) (1)

where p = {pl}Ll=1 is the desired probability vector from the x and pj =
xj∑L

l=1
xl

,

and D(x||y) =
∑L
l=1 pl log(plql ). The D(y||x) =

∑L
l=1 ql log(plql ) is the relative95

entropy or a directed divergence (cross entropy) of x and y through the Kul-

lackLeibler function [29].

Normalized Cross Correlation (NCC) involves a simple correlation comparison

between the spectra. The images should first be normalized due to many factors

such as image brightness variation, exposure conditions and lighting caused by100

the non-uniform shape of mineral grains. Normalization is performed through

division of the mean by standard deviation subtraction. NCC provides a corre-

lation number as valuable information showing the spectral difference between

the reference spectrum (similar to SAM, the reference spectra are calculated by

the spectral references of pure samples) and targeted spectrum. This method105

has been used for template matching and image analysis [30].

2.1.1. Sparse-PCA to extract spectral reference

PCA is a linear transformation that can be presented by S = XL (L is an

orthonormal basis matrix, and X is a mean-zero data matrix), which maximizes110

the projected data (S) variance (even hybrid methods such as two-dimensional

principal component analysis [31] are still linear). Principal components (PCs)

are extracted from the vectors in X and are the compact representation of the

basis vectors while K < p (this is also used for key wavelength identification

in detecting ochratoxin A (OTA) contamination in wheat using near infrared115

(NIR) [32]).

This is not the first time that sparse computation is used in spectral analysis

([33, 34, 35]). However, previous research was related to unmixing and endmem-
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ber analysis in hyperspectral remote sensing imagery, which differs from the

perspectives of this paper. The regularization terms were imposed for math-120

ematically solving sparse unmixing in three types of methods, namely, convex

relaxation methods [33, 34], greedy algorithms [36] and sparse Bayesian methods

[35], but we use it to extract spectral references through the first basis attained

by Sparse-PCA calculation. The replacement of the non-smooth l0 with l1 or

lp norm imposes the well-defined optimization problems to a tractable solution125

[37] in the convex relaxation methods: e.g. the alternating direction method of

multiplier method [38, 39]. The l0 regularization problem in the greedy algo-

rithm is solved by an iterative identification of potential endmembers from the

spectral library until the advent of best reconstruction in the mixed pixel [37].

Sparse-PCA involves additional regularization parameters, which maximize the130

uncorrelated PC variance and convert PCA into nonlinear transformation [30,

40]. The Sparse-PCA elastic net has relaxation l2 and l1-penalty terms as fol-

lows:

{ζ̂k, γ̂k} = argminζk‖X −XγkζTk ‖2F + δ‖γk‖22 + λ‖γk‖1,

s. t. AT
kAk = I. (2)135

where Xζk is the response vector, γ̂k = (XTX + δI)−1XTXζk , and ζ̂k =

argminζk‖X −XγkζTk ‖2F s.t.ζTk ζk = 1, ζTk A(k−1) = 0. In the case where the l2

regularization parameter δ is changing, the second term of the equation above

would be influenced (the γk approximation can be done by a soft-thresholding

rule [30]). γ1k represents sparse calculated eigenvector corresponds to the high-140

est eigenvalue which designates higher dominating spectra in the sparse basis

matrix. Sparse-PCA was employed to unmixed sampled spectra to extract spec-

tral references. This experiment involved two types of grain samples: the group

that did not exhibit any aggregation with other minerals (called ’pure samples’)

and other samples in which several grain types were mixed with other grains145

(e.g. quartz). By applying Sparse-PCA to the spectra of pure samples, we ex-

tracted the spectra for use as spectral reference (it can replace ASTER or USGS
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spectral libraries) in the application of spectral comparison techniques (as the

classification attributes). For example, in SAM, the spectral angle between the

low rank Sparse-PCA spectra and every other pixel spectra in the image cube150

was calculated to provide the attributes that were used in the classification step

[41].

2.2. Segmentation

Segmentation is essential to identify the minerals, and it can be performed by

simple approaches such as spectral information segmentation and discrimination155

ratio (threshold) or applying sophisticated techniques such as ELM or K-means

clustering. This section briefly reviews the methods employed for segmentation

Extreme Learning Machine (ELM)

Artificial neural networks can estimate difficult nonlinear mappings from the

input sample. A single layer feed-forward network structural design called ELM160

was proposed by Huang et al. [42], which solves the initiation problem when

using gradient descent. This technique reduces the computational complexity

for training, enhances learning performance compared with conventional ap-

proaches and is capable of nonlinear kernel and activation functions [43].

Clustering165

To cluster hyperspectral image cubes obtained from the experiments in an un-

supervised way, huesaturationvalue (HSV)-based K-means clustering was used.

This method categorizes false colors created to different groups, where these

groups are labeled as different minerals using spectral comparison techniques.

In general, false color composites are obtained by placing parts of wavelengths170

in different color groups (around the wavelengths of 1150 µm = red; 960 µm

= green; 1060 µm = blue). However, in this study, we obtained them through

spectral comparison techniques by applying different values of spectral compar-

ison attributes into a specific color (for example SAMpyrope = red, SAMolivine

= green, and SAMquartz = blue).175

8



Radiation Source

Display and Acquisition

Hyperspectral 
Infrared Camera 

Infragold plate and 
grains sample

Control

~25cm

1
3

 c
m

Hyperspectral infrared camera

Heating source

Mineral samples and Infragold

850 900 950 1000 1050 1100 1150 1200 1250 1300 1350
300

305

310

315

320

325

330

3351

0

quartz spectra from 
the experiment 

quartz spectrum (ASTER)

Infragold specrum

pyrope spectra from 
the experiment 

pyrope spectrum (ASTER)

Wave number (𝑐𝑚−1)

R
ef

le
ct

an
ce

850 1350

a b

c d

Figure 2: Experimental setup and spectra of minerals are shown in the figure. Upper image

represents the spectra of the minerals used in the experiment (pyrope and quarts mixed

sample) along with spectra from ASTER spectral library (a,b). Lower left hand-side image

is the scheme of experimental setup (c) along with three pictures taken from the conducted

experiment (d).

3. Experimental Results

The proposed approach is based on statistical analysis and computer simu-

lations on hyperspectral data. The properties of the dataset, acquisition prop-

erties and experimental setup are described.

3.1. Mineral Grains and LWIR spectroscopy180

Given that the field of view (FOV) of the sensor was small and the grains

were between 0.6 and 2.0 mm, a special lens was used for higher spatial res-

olution (which is described in the subsequent section). The mineral samples
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were divided into groups of mixed and pure samples, and three minerals pre-

sented distinguishable spectra in LWIR (i.e. Olivine (Mg+2, Fe+2)2SiO4, Py-185

rope Mg3Al2(SiO4)3 and Quartz SiO2 [44]). Figures 2a and 2b show the spec-

tra of a mineral and one example of a mixed sample. Image acquisition in

this paper was conducted while the heating source was turned on and off (for

performing the continuum removal [45]). For both conditions, the spatial reso-

lution was 200× 256, and 87 spectral channels were recorded. The sensor used190

to make the measurements was a lightweight hyper-camera imaging spectrora-

diometer (HYPER-CAM LW) [46] operating in the LWIR band (from 7.7 to 11.8

µm). The LWIR PV-MCT focal plane array detector has a spatial resolution of

320×256 and spectral resolution up to 0.22µm. The spectra were obtained using

a Fouriertransform spectrometer, and the hyper-camera measured the complete195

spectrum for every pixel and had an instantaneous FOV of 0.35 mrad [46]. An

LW macro lens provided a pixel footprint of 0.1 mm with working distance of

30 cm (Figure 2b). A heating source was located in front of the samples to

provide active thermographical conditions in the experiment (Figure 2c). How-

ever, image acquisition was continued after turning off the heating source. The200

grains were attached to adhesive carbon-based tape during the experiment and

then placed on an infra-gold plate. The hyperspectral images were obtained

perpendicularly with the spectral resolution of 6 cm−1 (∼ 0.0119µm at 7.7µm

and ∼ 0.0465µm at 11.8 µm) in 87 spectral bands. Given that an infragold was

placed in the background, its reflectance assisted in removing the continuum205

from the spectrum [45].

3.2. Results of proposed approach

The results of the proposed approach are presented in this section, and

they are divided into two stages. Firstly, the results of the application of low

rank Sparse-PCA from the pure samples versus ASTER spectral library as the210

reference spectra in spectral comparison techniques are demonstrated. Secondly,

the results of using two different learning systems are analyzed.
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3.3. ASTER spectral library and the result of Sparse-PCA as reference spectra

The ASTER imaging program at NASA [4] comprises compilations of spec-

tral information from the Jet Propulsion Laboratory, Johns Hopkins University215

and the United States Geological Survey. The library contains the spectra of

nearly 2000 types of soils, rocks, minerals, snow, water and artificial minerals.

Several of these spectra cover the wavelengths measured in this study (0.4 14

µm). The spectral data for each mineral cover the visible, NIR, mid-IR and ther-

mal IR wavelengths. To apply the spectral comparison techniques, the spectral220

reference has a key role in the calculations. In general, the ASTER spectral

library is used as a reference spectrum for each mineral. Here, the possibility of

using Sparse-PCA as spectral reference was analysed by generating the spectral

references from pure mineral grains. PCA itself can provide a reasonable repre-

sentation of the statistical information, but Sparse-PCA provides more robust225

data facing noise [36, 33, 34, 37, 38, 39, 30, 40]). The low rank Sparse-PCA

spectra extracted from the basis matrix (sparse calculated eigenvector matrix)

having the spectra of pure samples as their input and the abundance spectra of

pure samples usually belong to one mineral. The extracted spectra (low rank

Sparse-PCA spectra) also belong to the same mineral and used as reference230

spectra. The results are confirmed by comparing the ASTER spectra with the

low rank Sparse-PCA spectra, which show identical similarity (Table 1) and

using SAM and NCC 1. To calculate the reference spectra using Sparse-PCA,

a pixel spectra set of pure sample minerals was used as a training set with no

overlap to the testing set (testing sets contained pyrope-quartz or olivine-quartz235

grain-mixed samples).

1This calculation is simply a score of difference, and it differs from using spectral compar-

ison for generation classification attributes or false color images.
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Table 1: Comparison among the low rank Sparse-PCA spectral references and ASTER mineral

spectra using SAM and NCC (percentage of the similarity).

Spectral Comparison 
Technique 

Quartz Quartz 
Similarity (%) 

Olivine Olivine 
Similarity (%) 

Pyrope Pyrope 
Similarity (%) 

SAM 0.4830 51.70 0.2698 73.02 0.2330 76.70 
NCC 0.6055 60.55 0.9336 93.36 0.9520 95.20 

 

3.4. Segmentation performance

3.4.1. Results of spectral comparison techniques

The performance of the spectral comparison techniques is presented in this

section. SAM and NCC demonstrated higher performance than SID due to240

the direct calculation of the difference between the targeted and referenced

spectra. These algorithms calculate the difference between the reference and

targeted spectra, and this difference is given in the form of an error (in the case

of SAM-lesser error shows better fitting), correlation similarity (in the case of

NCC-higher score shows better fitting) and cross entropy (in the case of SID-245

higher entropy depicts better correlation). Topological similarities among the

mineral’s spectra create sufficient performance for SAM and NCC due to their

dependency on the shape of the spectra as compared with SID, which estimates

the difference entropy based on statistical information. Moreover, applying

spectral comparison techniques showed good improvement in generating false250

colors, which led to better identification of the minerals using clustering (Figure

4). The main reason behind this improvement is elimination of unrelated parts

of the spectrum, which decrease inconsistencies between the target and reference

spectra. Each pixel spectrum was compared to provide the spectral difference for

targeted pixel spectrum and continued by looping over all the spectral pixels255

in the hyperspectral cube. Consequently, spectral variation provides a map

that represents the similarity of the spectra to the targeted spectra (i.e. a

12



Table 2: Accuracy of ELM for mineral identification.

 

 
 

Minerals 

Accuracy of Classification (%) 

 
Spatial 

resolution 
of RoI 

ELM 

Linear kernel Polynomial  
kernel 

RBF Sigmoid 

SAM NCC SAM NCC SAM NCC SAM NCC 
background Pyrope 160*161 99.8 98.9 99.9 99.4 99.9 99.1 99.9 99.1 

Olivine 157*139 94.1 98.4 97.2 99.9 95.5 99.9 92.5 98.8 

Non-
background 

Pyrope 160*161 97.7 10 99.1 43.35 98.95 10 98.95 10 

Olivine 157*139 94.8 87.95 97.7 99.55 96.3 99.05 93.55 93.65 

Table 3: Computational load for ELM classification is shown.

 

 
 

Minerals 

Computational Cost (time in second) 

 
Spatial 

resolution 
of RoI 

 
Spectral 

comparison 
techniques 

 
 

ELM 

Linear kernel Polynomial  
kernel 

RBF Sigmoid 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Training 
Time 

Testing 
Time 

Pyrope 
 

 
160*161 

SAM 21.16 63.10 0.61 71.91 7.67 65.68  4.06 126.07 3.08 

NCC 27.74 59.83 0.68 73.68 7.67 64.95 4.15 119.55 3.02 

Olivine 
 

 
157*139 

SAM 20.64 55.63 0.61 66.16 6.98 61.99 3.93 107.09 2.71 

NCC 26.89 54.61 0.64 64.18 7.07 57.65 3.76 110.41 3.02 

false color map). These metrics are the input for the segmentation section in

the approach and used as classification attributes or false color images to be

grouped in different sets.260

3.4.2. Results of ELM and clustering

The minerals were identified in different settings involving supervised/unsupervised

approaches. For the supervised approach, a training set was randomly selected

from pixels of mineral grains. By contrast, the unsupervised approach did not

require a training stage, but the selection of the clusters needed interference265

of training information (labeled data). Before explaining the performance of

segmentation, we analyzed the performance of spectral comparison techniques.

Spectral comparison techniques provided the classification attributes and false

color images, which facilitated the classification and clustering segmentation
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Figure 3: The results of spectral comparison analysis (SAM, SID, and NCC) are revealed by

false colors in the figure.

of mineral grains in the hyperspectral images, respectively. The results of dif-270

ferent segmentation methods to identify minerals are shown. Two techniques,

namely, ELM and K-means clustering, were tested. Three different minerals

displayed varying signatures in the LWIR band and spectra corresponding to

the sample’s background. Consequently, four different classes, including the

background, were explored in the hyperspectral images for the presence of al-275

ternative classification/clustering methods.

Automated mineral identification using ELM classification followed the training

and testing scenario. Classification with ELM [with linear, polynomial, radial-

based function and Sigmoid kernels][42, 43, 47, 48] was directly related to the

training stage. Training and testing were conducted based on the feature values280
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Figure 4: The results of the clustering by SAM (a.), NCC (b.), and SID (c.). The mineral

grains have been automatically detected through their false colors. a. and b. show the

hyperspectral and binocular images from olivine and pyrope, respectively. Columns i. and

iv. show the false colors results using the spectral comparison techniques. Columns ii., iii.,

v., and vi. depict the clustering results for each minerals and every spectral methods.

of NCC and SAM as the attributes were separately calculated for each mineral.

The number of observations for every spectral analysis and mineral differed due

to extra enhancing filtering, which was performed to eliminate inconsistency

in the training and testing data (between 1000-3000 and 800 non-overlapping

samples for training and testing, respectively) [49]. Tables 2 and 3 show the285

accuracy and computational load for ELM classification.

The unsupervised segmentation of minerals was performed by HSV color-based

K-means clustering. The entire processes of clustering were executed knowing

the number of interested clusters and the relevant data to select a particular

cluster. The results of HSV-based K-mean clustering are shown in Figure 4.290

Given that the accuracy of the clustering techniques in Table 4 is directly re-
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Table 4: Accuracy of the HSV based clustering for three different samples.

 
MAM 

 
HSV-based clustering 

 
Quartz (%) 

 

 
Pyrope (%) 

 

 
Olivine (%) 

 

 
Total accuracy 

(%) 

 
 

NCC 

Accuracy of mineral 
detection 

77.95 94.59 85.39 85.98 

Misclassification 22.06 5.41 14.61 14.02 

Total accuracy 55.89 89.19 70.78 71.95 

 
 

SAM 

Accuracy of mineral 
detection 

75.82 91.40 99.75 88.99 

Misclassification 29.56 29.34 4.03 20.98 

Total accuracy 46.25 62.06 95.72 68.01 

 
 

SID 

Accuracy of mineral 
detection 

68.52 72.01 92.19 77.57 

Misclassification 31.48 27.99 7.81 22.43 

Total accuracy 37.04 44.01 84.38 55.14 

 

lated to the accuracy of segmentation using clustering, global accuracy of the

approaches was calculated by multiplying the accuracy of each step by the seg-

mentation results. Table 5 shows the computational complexity of false color

generation and applying clustering for mixed sample sets. The entire computa-295

tional process was performed with a PC (Intel Core 2Quad CPU, Q6600, 2.40

GHz, RAM 8.00 GB, 64 bit Operating System), and data analysis was conducted

using MATLAB programming language. To apply these techniques, a MATLAB

hyperspectral image index analysis toolbox [50] was used. Figure 4 depicts the

segmentation results through clustering. Given the similarity between low rank300

Sparse-PCA and ASTER (Table 1), either the low rank Sparse-PCA spectra or

the ASTER library data could be used as the reference spectrum. Table 1 rep-

resents an estimation of the spectral similarity among the spectra in percentage.

It indicates the sensitivity of the spectral comparison methods used for spectral

comparison calculation.305
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Table 5: Computational complexity of the false color generation and clustering approach.

Computational Cost (time in second) 

Minerals Spatial Resolution  NCC SAM SID 

Mixture of Pyrope & Quartz 144*152 362.3 325.4 354.2 

Mixture of Olivine & Quartz 157*139 497.7 331.3 368.6 

 

3.4.3. Accuracy of the classification

The proposed approach provided accuracy by counting the correct detected

pixels of hyperspectral images. Ground truth was required to compare the re-

sults of systems for quantitative assessment. Ground truth was made by manu-310

ally labeling the images for different types of minerals. The labeled images were

verified using micro X-ray fluorescence (µXRF) images from the samples and

ArcGIS to map them with the labeled images or with results of automatic de-

tection (Figures 5 and 6). The ground truth was prepared using the information

of mineral aggregate obtained by µXRF test. Since the aggregation information315

depends on mineral content in every sample, the labeling process is facilitated

considering the results of µXRF for particular element(s) in each grain. Figure

6 depicts the process of creating ground truth image for biotite sample. Since

biotite contains several distinctive elements such as Mg, Ti, Fe, Al, etc and their

maps guide the biotite labeling in the reference image. Similarly for quartz, that320

the aggregate of Si guides the quartz ground truth to be labeled. Local accuracy

(ACC) is calculated by:

ACC(%) =
Correct detected pixels

Total pixels of mineral
∗ 100 (3)

Notably, the location of the detected pixels is vital to identify the mineral

grains. The total accuracy of both methods was calculated. The total accu-

racy of each method was multiplied by the sensitivity percentage of spectral325

comparison techniques (Table 1), which might decrease the current accuracy.

However, the accuracy did not indicate the reliability of the system because the

main objective was to identify the grains. Pixel calculation was performed as a
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Figure 5: The binocular images from the grains of pyrope, olivine, and mixed with quartz

grains are shown. Also the /muXRF image of the samples are also shown in the image to verify

the ground truth images and labeling. (g1-g3 and h1-h3 depict the images of pyrope-quartz

and olivine-quartz samples using Micro X-ray fluorescence (µXRF), respectively. i1,i2,j1,j2

show a point in the grains of olivine and pyrope, respectively.

comparison criterion, and two or three pixels in the grains provided satisfactory

outcomes for the system (as these pixels represent the grain’s content).330

4. Discussion

The main objective of this research was to compare two automatic methods

for mineral identification. For this purpose, we used statistical and spectral

information for hyperspectral comparison analysis. Segmentation and mineral

identification in the hyperspectral images underlined a set of feature combi-335

nations using such information. This study has shown the application of hy-
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Figure 6: The image presents the procedure of creating the ground truth images as the

reference for our computational and quantitative analysis. µXRF shows the mineral aggregate

for the grains in the sample which led to creating the labeled reference images for biotite and

quartz (upper part of the figure). In addition, ArcGIS fitted the microscopic image of the

samples with the results of automated identification (lower part of the figure).

perspectral infrared imagery in the 7.711.8 µm wavelength range for mineral

identification through supervised/unsupervised categorization techniques. The

presented approach challenged two different types of segmentation involving

classification (using SAM and NCC) and clustering (using SAM, SID and NCC).340

As the classification is a supervised approach, it suffers from dependency on the

number of training samples in the training stage. Misclassifications are ulti-

mately inevitable because of the small size of grains and lack of proper training

in the system. Moreover, the nature of the classification approach unequivocally
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creates two stages of data processing, which is considered an inauspicious short-345

coming that debilitates supervised system versus unsupervised system (particu-

larly for this application). In addition, application of the supervised procedure

(e.g. ELM) might create too much sensitivity against acquisition’s parame-

ters, such as experimental setup, background or special temperature of heating

source. This disadvantage might be attributed by specific values of weights in350

the training matrix (in the case of using ELM or any other neural networks).

On the contrary, clustering leads a direct grouping of spectral data and is simple

and propitious to be used for such applications. It does not involve a training

stage, which considerably decreases pre-processing analysis and labeling costs,

but it is also highly robust against acquisition parameters. This work con-355

sidered limited mixed samples (quartz, pyrope, and olivine) to focus more on

the comparison analysis of supervised and unsupervised machine learning ap-

proaches and avoid obfuscating the discrimination problem. However, each of

these approaches can be modified and challenged by more complicated scenarios

to verify their strength and shortfalls.360

The contributions of the proposed approach can be examined through two ma-

jor points of view: geological and spectral analysis. In geology, the presented

method increased the perspective of mineral identification from remote sens-

ing, airborne imagery and core logging to the small mineral grains, which in-

cludes the analysis for estimation of spectral radiation (continuum removal) and365

identification computations. Some related works include hyperspectral mineral

identification in core logging (i.e. [12, 13, 14]), which was highly similar to the

method in this research in terms of close range (distance between target and

hyperspectral camera) and experimental conditions. However, their complex

mineral aggregate and shape of mineral targets were comparatively different.370

The second point of the contribution is related to a major comparison between

the two methods for automation of mineral identification and spectral analysis.

ELM and clustering approaches were compared for the same sample sets.
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5. Conclusions

The presented approach involved an experiment in the hyperspectral im-375

agery in the 7.7µm to 11.8µm LWIR wavelength range conducted using a FTIR

hyperspectral camera. The objective was automatic identification of certain

minerals (pyrope, olivine and quartz). Spectral comparison methods such as

SAM, SID and NCC have been used to extract features in the form of false col-

ors. Spectral references provided by statistical information using Sparse-PCA380

to extract the low rank Sparse-PCA from pure sample grains. These spectral

references have shown identical similarity compared with ASTER (JPL/NASA)

spectral library. For final decision making, two approaches were investigated

(i.e. ELM and HSV-based K-means clustering) to identify the mineral grains in

a supervised/unsupervised manner, and the results indicated promising accu-385

racy. Comparisons could be made by keeping the study limitations in mind, such

as the non-homogeneous surface of mineral grains that creates the radiometric

variation as changing parameters within the test. The supervised classification

accuracy reached 76.69% using SAM-based polynomial kernel ELM for pyrope

mixture and 70.95% using SAM-based sigmoid kernel ELM for olivine mixture390

as overall hyperspectral image classification accuracy. The classification accu-

racy was slightly lower than that of clustering, which exhibited an accuracy of

84.91% (NCC) for pyrope and 69.9% (SAM) for olivine identification by adding

the sensitivity percentage into the accuracy calculations. The supervised classi-

fication showed significant dependency on the number of training samples and395

was considerably more difficult than clustering. The results of SID showed lower

efficiency than those of SAM and NCC. Future work requires further analysis

to increase the performance of automatic identification of mineral grains.
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