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Hyperspectral imaging in the long-wave infrared (LWIR) is a mean that is proving its worth in the characterization of
gaseous effluent. Indeed the spectral and spatial resolution of acquisition instruments is steadily decreasing, making the gases
characterization increasingly easy in the LWIR domain.The majority of literature algorithms exploit the plume contribution to the
radiance corresponding to the difference of radiance between the plume-present and plume-absent pixels. Nevertheless, the off-
plume radiance is unobservable using a single image. In this paper, we propose a new method to retrieve trace gas concentration
from airborne infrared hyperspectral data. More particularly the outlined method improves the existing background radiance
estimation approach to deal with heterogeneous scenes corresponding to industrial scenes. It consists in performing a classification
of the scene and then applying a principal components analysis based method to estimate the background radiance on each cluster
stemming from the classification. In order to determine the contribution of the classification to the background radiance estimation,
we compared the two approaches on synthetic data and Telops Fourier Transform Spectrometer (FTS) Imaging Hyper-Cam LW
airborne acquisition above ethylene release. We finally show ethylene retrieved concentration map and estimate flow rate of the
ethylene release.

1. Introduction

Anthropogenic sources, especially industrial, have a major
contribution to air pollution and security issues. However,
these emissions remain poorly estimated at a high spatial
resolution over heterogeneous scenes, like industrial plants.

Most of these emissions present a spectral signature
in the thermal infrared domain. This is the reason why
thermal hyperspectral imaging systems are deployed for their
characterization. More, as such plume has a small extent
they require a high spatial resolution imagery which can be
achieved with existing airborne systems [1–3].

However, signature of gaseous effluents differs highly
from usual targets since the plume modifies the spectral
signature of the background: different pixels in the data cube
that contain the same gaseous plume could have a totally

different spectral signature. At first order, spectral signature
of these pixels will correspond to background spectra affected
by either absorption or emission of the gas. This variability
depends onbackgroundmaterials and temperature difference
between the ground and the plume.

Existing approaches which use the spectral information
of such sensor to characterize gas plume can be divided
into two stages: endmember decomposition techniques to
estimate the background properties [4–6] and trace element
detection [7–10] or quantification methods [11–13] based on
estimated gas differential signature (difference for each “on-
plume pixel” between measured radiance and “off-plume”
estimated radiance).Then it has been shown that background
uncertainty and heterogeneity are one of the major sources
of incertitude in gas quantification and detection limit [14–
16]. Depending on the ground properties the same amount
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of gas can have a signature; thus a retrieved concentration is
modified by a factor of ten.

This paper aims to reduce the quantification error due to
misestimation of background properties.

To deal with ground variability for heterogeneous scene,
clustering was suggested to compute covariance matrices of
different spatial classes composing the background [7, 11],
thus creating independent classes on which detection algo-
rithms are applied.

The major limitation of these methods is that clustering
background step may be contaminated by the presence of the
gas plume [4, 5, 17].

If existing in the reflective domain, for example, the very
weak gas plume signature has little impact on the clustering
stage [7, 8]. But for quite strong signature in the thermal
domain, gases plume anomalous classes can appear.

To overcome such issues, the clustering phase should be
achieved outside the spectral bands corresponding to the
strong absorption of the gas to be detected. Some recent
works [18] show that such Selected-Band approach can be
used to estimate background radiance under the plume with
an interesting precision for various scenes.

In this paper, we look for a background estimation
method that will efficiently reduce the gas retrieval quantifi-
cation error in the case of heterogeneous scene. In this work
we introduce a novelmethod to estimate pixel by pixel the off-
plume radiance under the plume and the specific additional
spectral signature introduced by the gas plumeusing airborne
hyperspectral data.

This method aims to overcome the difficulties that arise
from the inherent mixture of the heterogeneous background
and the gas plume spectra. We decompose the scene accord-
ing to the spectral-spatial information, and, for each pixel of
each cluster, we estimate differential gas signature taking into
account background variability and gas spectral behavior.

This paper is structured as follows. Section 2 is dedicated
to the description of the methodology. Then, Sections 3
and 4 evaluate the application of our method on synthetic
data and Telops Hyper-Cam airborne platform data. Finally,
concluding remarks are given in Section 5.

2. Methodology

2.1. Plume Detection. Plume detection is an important step
for gas quantification process. It allows selecting the plume
area, where the background radiance has to be estimated, and
the off-plume area useful to getting background properties.

In the literature, several algorithms have been proposed
to detect the presence of gas fromhyperspectral data. Spectral
Matched Filter (SMF) [4] was chosen in this study because it
produced a good detection of the plume with a low number
of false alarms.

LetX be a hyperspectral image of𝑁 pixels and𝑁B bands,
represented by an𝑁 × 𝑁B matrix. With T being the gaseous
target spectrum, we can write for the 𝑖th pixel x

𝑖
of the

hyperspectral image X:

x
𝑖
= T ⋅ 𝛼

𝑖
+ d, (1)

where 𝛼 is the target fit coefficients (abundances) and d is the
residual vector to be minimized. To retrieve the abundances
𝛼, we need to solve the unconstrained regression (see (1)).The
analytic solution of this regression is

𝛼
𝑖
=
T𝑇Σ−1X x

𝑖

T𝑇Σ−1X T
, (2)

where ΣX is the covariance matrix of this scene. An unbiased
estimation of ΣX can be calculated as follows:

ΣX =
1

𝑁 − 1
⋅

𝑁

∑

𝑖=1

(x
𝑖
− ⟨x⟩) (x𝑖 − ⟨x⟩)

𝑇
. (3)

We consider here the targeted gases as known. Hence, we
use the spectra of targeted gases from the Pacific Northwest
National Laboratory (PNNL) absorbance Library [19, 20] to
construct T. The detection performance can be improved by
using an estimation ofΣX involving only plume-absent pixels.

Once the vector of abundances 𝛼 is calculated, the plume
mask is deduced by thresholding.

2.2. Selected-Band Approach (SB). The principal components
analysis (PCA) was applied by many authors [10, 11, 21] in
order to obtain a representation of the background radiance
of plume-present pixels (𝐿bkg(𝜆)). First, the principal vectors
are computed using the plume-absent pixels radiances.Then,
background radiances of plume-present pixels are assumed
to lie in the subspace spanned by these principal vectors.

Niu et al. [18] go even further by developing an approach
to estimate the background radiance. This approach is based
on the fact that, in plume presence, the on-plume radiance
(𝐿on(𝜆)) is essentially equal to its background (off-plume)
radiance over the most transparent spectral bands. Using
this observation, they combine a Selected-Band algorithm to
determine these transparent spectral bands with the PCA in
order to estimate 𝐿bkg.

Thereafter, in the present paper, we shall refer to this
method simply as Selected-Band (SB).

After a plume detection on the hyperspectral image X,
𝑁off pixels do not contain any plume gas. A𝑁off ×𝑁B matrix
Loff is constructed by arranging the off-plume measured
radiance spectra. A PCA model is then given by

Loff = Uoff ⋅ P
T
+ Eoff , (4)

where Uoff is an 𝑁off × 𝑁p matrix of coefficients for plume-
absent pixels, P is an𝑁B × 𝑁p of principal components, and
Eoff is the residual matrix. 𝑁p is the number of considered
principal components. For the used data, we found𝑁p = 10
to be an appropriate choice. It allows us to save more than
99.9% of the information.

Since the background radiances of plume-present pixels
are assumed to lie in the subspace spanned by the principal
components P, the matrix Lbkg of the background radiance
spectra of the 𝑁on plume-present pixels could be expressed
as follows:

Lbkg = U ⋅ P
T
+ Ebkg. (5)
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U is an𝑁on ×𝑁p matrix of unknown coefficients to be deter-
mined. Ebkg is the residual matrix in this case.

For this purpose, a second PCA model is written for the
𝑁on plume-present pixels, using only the 𝑁SB bands, where
the gas absorption coefficient is virtually nil:

Lsbbkg = L
sb
on = U ⋅ P

sbT
+ Eon, (6)

where Lsbon is an 𝑁on × 𝑁SB matrix, containing the on-plume
measured radiance spectra for the selected bands. PsbT is an
𝑁SB ×𝑁p matrix of principal components; Eon is the residual
matrix.

By using the Moore-Penrose pseudoinverse of the matrix
Psb (Psb†

= (PTP)−1PT), a least-square estimate forU is given
by

U = Lsbon ⋅ P
sb†T
. (7)

An estimation of the background radiances of plume-present
pixels is thus obtained by the following expression:

Lbkg = L
sb
on ⋅ P

sb†T
⋅ PT
. (8)

The SB method has two leading limitations: the first
comes from the assumption that Lsbbkg = L

sb
on. This equality is

not effective if the temperature of the plume is different from
the ambient atmospheric temperature. Indeed, this temper-
ature difference will have an impact on the transmission of
atmospheric gases and therefore on the on-plume radiance
outside gases signatures.

The second limitation relates to the case of heterogeneous
soil. SB method as presented by Niu et al. can be limited if
some background plume-present pixels are not well repre-
sented in plume-absent pixels.We propose otherwise to solve
this second point using a classification of the scene.

2.3. Clustering-Based Selected-Band Method (CSB Method)

2.3.1. Classification of the Scene. Since Funk et al. [7] the
classification of a hyperspectral scene is a main preliminary
step of plume characterization through this scene. Funk et
al. showed that classification improves the results of plume
detection algorithms. They concluded that clustering data
and removing the mean values could be seen as a type of
automatic background suppression.

Moreover, the classification of the scene aims to carry
off the disturbances on plume’s quantification due to the
heterogeneity of the soil [15].

In this subsection, we explain the classification process
in order to enhance the background radiance estimation. A
first classification is carried out on the plume-present pixels
(a plume detection algorithm is executed upstream); another
is done on the rest of the image.

This classifications is organized in two stages: first, we per-
form a principal components transform [4] on the radiance
spectra of the pixels of interest. Then, we just select the first
components for further classification because the important
background information is included in these components.

Finally, we carry out a classical 𝑘-means on these components
to classify the scene.

The interest of this dimension reduction is to shorten
the time processing of the 𝑘-means algorithm, without
deteriorating its performances. The number of the retained
components depends on the image to be treated. Usually, the
use of the 3 first principal components is sufficient to have a
good classification of the scene.

We choose the 𝑘-means algorithm for our classification,
at one hand, because it is an unsupervised algorithm.Thus, it
will be appropriate for a large number of different hyperspec-
tral images. On the other hand, this algorithm is one of the
fastest clustering algorithms.

At the end of this step, we obtain 𝑁C classes in the
area without plume and 𝑁CP classes containing plume. The
number of these clusters depends on the threshold𝐷max, used
to specify the maximum distance of a pixel to the centroid of
its cluster.

2.3.2. Clustering-Based (CB) Background Radiance Estima-
tion. A first approach of Clustering-Based (CB) background
radiance estimation we used consists in a classes matching
between the plume-present and plume-absent regions.

The area under the plume has a petty spatial extent
compared to the rest of the scene, whereof it only contains
a small number of classes. In most cases it stands to reason
to assume the classes under the plume as an extension of
classes outside the plume and we assume that the presence
of gas does not change the main properties of background.
Indeed, the threshold𝐷max is selected such that pixels belong-
ing to the same class have nearly the same characteristics
(ground temperature and emissivity, atmospheric profiles).
Thus, within a class, the off-plume radiance 𝐿off is very close
from one pixel to another.

For each plume-present class CP
𝑖
, the average spectrum

of its pixels is calculated; it is then compared to the average
spectra of all plume-absent classes (C

𝑗
)
1≤𝑗≤𝑁C

. Readers will
note that the comparison is performed only on bands where
the target gases absorption coefficients are very small. Class
C
𝑗∗

with the minimal distance from the plume-present class
CP
𝑖
and the latter are considered to be the same. For a pixel

xp in this class CP
𝑖
, we consider that its background radiance

𝐿bkg(xp) is equal to the mean radiance of pixels belonging to
class C

𝑗∗
.

TheCBmethod bypasses the soil heterogeneity limitation
of the method SB. However, it does not take into account
the intraclass variability of the background radiance. In the
following paragraph we will present another Clustering-
Based method that appropriates the benefits of SB and CB
methods of 𝐿bkg estimation, without their shortcomings.

2.3.3. Clustering-Based Selected-Band Method (CSB Method).
In order to improve the background radiance estimation
given by the Selected-Band approach (see Section 2.2) and
the Clustering-Based method (see Section 2.3.2), we propose
to perform this method on each cluster stemming from the
classification (Section 2.3.1).
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After a plume detection, classifications of the scene are
realized separately for plume-absent pixels and for plume-
present pixels; then each class of plume-present pixels is
associated with a plume-absent pixels class. For each plume-
present class CP

𝑖
, the Selected-Band approach is performed

using (8) with a matrix PT
C𝑗∗ derived from a PCA involving

the pixels of the class C
𝑗∗
. Recall that the latter corresponds

to the plume-absent class with the minimal distance from the
plume-present class CP

𝑖
:

LCP𝑖bkg = L
sb CP𝑖
on ⋅ P

sb†T
CP𝑖 ⋅ P

T
CP𝑖 .

(9)

In the following sections, we will present the improve-
ment of background radiance estimation for plume-present
pixels due to this new method, both on synthetic and real
scenes.

3. Application on Synthetic Data

3.1. Presentation of the Synthetic Data. To evaluate the per-
formances of background radiance estimation, synthetic data
of an industrial scene were used. These data were simulated
using a tool we have developed in order to provide a
comprehensive test where the “truth” is known.

The dimensions of the simulated images are 200 ×
200 × 107 (rows by columns by spectral dimension). The
wavenumber range used is 800 to 1330 cm−1 with a resolution
of 5 cm−1. In this subsection, we describe the process of
synthetic data generation.

3.1.1. Ground Simulation. We first defined the distribution
of soil composition. Several materials frequently present in
industrial scenes (asphalt, copper, aluminum, grass, etc.) were
chosen (see Figure 1). Then we attributed for each pixel of
the image the appropriate physical properties (emissivity and
temperature), according to the present material.

The emissivities were taken from ASTER data base
[22]. Figure 2(b) represents the emissivities of the different
materials present through the synthetic scene.

The ground temperature varies widely depending on
weather conditions, soil composition, orientation of the sur-
faces, and the relief of the scene (shadow effect). It is therefore
very difficult to have a realistic estimate of this quantity. The
values we have chosen are close to those measured during the
CAPITOUL [23] experiment.

In order to take into account the intraclass variability of
the ground temperature, a Gaussian white noise was added to
this parameter with a standard deviation of 1–3K according
to the material. In contrast, we did not take into account the
intraclass variability of ground emissivity.

3.1.2. Atmospheric Profiles Integration. We assume that the
scene dimensions are small enough to consider a spatially
uniform atmosphere over the image.The atmospheric species
(especially water vapor and ozone), the pressure, and the
temperature profiles are set for the different altitudes of the
atmospheric layers. For this purpose we have used models
derived from radiosonde measurements.

Brown sandy loam
Asphalt
Bare red brick
Olive green paint
Aluminum

Green grass
Oxidized galvanized steel
Copper
Slate stone shingle
Concrete paving

Figure 1: Spatial distribution of the different groundmaterials com-
posing the scene.

At this stage, we generate a free-plume hyperspectral
image of the scene, based on MODTRAN calculations, using
COMANCHE software [24].

3.1.3. Gas Signature. The different gas species absorb light at
various wavelengths. This phenomenon depends on the elec-
tronic, vibrational, and rotational bands of the gas molecules.

In this study, we selected two pollutant gases with very
different radiative behavior. The sulfur dioxide (SO

2
) has

a spread absorption spectrum on the 7.5–12.5𝜇m band as
shown in Figure 4, while the ammonia (NH

3
) presents

several narrow spectral bands, especially for the wavelengths
10.42 𝜇m and 10.75 𝜇m, which correspond to 960 cm−1 and
930 cm−1 in terms of wavenumber.

The absorption spectra of Figure 4 are taken from the high
resolution library of the PNNL. These spectra were reduced
to a 5 cm−1 spectral resolution to be consistent with typical
sensor spectral resolution.

3.1.4. Plume Distribution Simulation. In order to introduce
the plume’s radiative impact to the free-plume signal, we have
to model the 3D plume distribution in the scene, which is to
define for each pixel of the plume the vertical profile of the
present gases.

ADMS-Aircraft (Atmospheric DispersionModelling Sys-
tem) code [25] was used to generate a Gaussian plume based
on the Brigg equation for plume dynamics [26]. The use
of ADMS-Aircraft code requires the specification of some
inputs related to the scene geometry, the atmospheric and
meteorological conditions (in particular the wind speed and
direction), and the plume initial conditions like the release
rate/velocity/temperature.

Figure 5 shows the distribution of integrated concentra-
tion of a simulated SO

2
plume with the following parameters:

(i) outflow rate (SO
2
): 222 g/s,

(ii) outflow rate (NH
3
): 11.39 g/s,

(iii) stack height: 20m,
(iv) stack radius: 3m,
(v) plume ejection speed: 2m/s,
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Figure 2: Ground parameters simulation. (a) Ground temperature map. (b) Emissivity spectra of materials present in the synthetic scene.

Figure 3: Synthetic refinery scene without plume. Image in RGB
colors, representing the bands (R: 820 cm−1, G: 965 cm−1, and B:
1165 cm−1).

(vi) plume ejection direction: vertical,
(vii) wind speed: 2m/s.

A plume temperature distribution simulation is also needed
to introduce the plume’s radiative impact on the free-plume
signal. To introduce plume temperature distribution needed
to estimate the plume’s radiative impact on the free-plume
signal, we only set the gas exit temperature assuming that
Δ𝑇, the difference between the plume temperature (𝑇p)
and the initial ambient temperature (𝑇a), follows the same
distribution compared to the gas concentration [11]. In our
simulation we fixed Δ𝑇 at the emission source to 300K.

The radiance signal of the plume-present scene is rep-
resented in Figure 6 and that of the plume-absent scene in
Figure 3.This signal is obtained using COMANCHE software
that takes into account all the parameters described above.
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Figure 4: Absorptive coefficient spectra of sulfur dioxide (blue
curve) and ammonia (red curve).

3.2. Results and Discussion

3.2.1. Plume Detection. The first step performed is the plume
detection.TheSMFalgorithmwas applied twice: the first time
for detecting SO

2
. The absorbance of this gas was used to

model the associated target vector T. The second time the
vector T was taken equal to the absorbance of NH

3
. After

two thresholding operations on these results, we consider that
the plume region is the union of the two masks. Note that a
morphological opening operation was performed in order to
remove the detection artifacts.

Figure 7 represents the plume mask obtained at the end
of these treatments.

3.2.2. Classification of the Synthetic Scene. In this subsection,
we evaluate the efficiency of the proposed classification
method. For this purpose, the confusion matrix and the
Cohen kappa coefficient are used.
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Figure 5: Distribution of SO
2
concentration of the simulated plume,

with an outflow rate of 222 g/s and a wind speed of 2m/s.

Figure 6: Synthetic refinery scenewith aGaussian plume of SO
2
and

NH
3
. Image in RGB colors, representing the bands (R: 820 cm−1, G:

965 cm−1, and B: 1165 cm−1).

Figure 7: Plume detection mask for the synthetic refinery scene.

In Figure 8, we illustrated the classification results on
the synthetic refinery scene, both for the plume-absent area
(Figure 8(a)) and the plume-present area (Figure 8(b)).

Otherwise, in Table 1, we figured the confusion matrix
of the two classifications realized. This matrix represents, for
each material present in the synthetic scene, its distribution

Table 1: Confusion matrix of the classifications performed on the
synthetic refinery scene.

(a)

Material Classes of the plume-absent area
1 2 3 4 5

Green grass 3149 141 0 0 0
Brown sandy loam 3 15241 121 0 0
Olive green paint 0 15 3165 350 0
Asphalt 0 410 2543 999 0
Bare red brick 0 0 51 36 0
Concrete paving 0 206 1695 891 0
Slate stone shingle 0 380 220 3 0
Oxidized
galvanized steel 14 686 734 198 0

Aluminum 0 0 0 0 709

(b)

Material Classes of the plume-present area
1 2 3 4

Brown sandy loam 5145 9 0 0
Asphalt 128 612 0 0
Bare red brick 0 29 0 0
Concrete paving 46 373 0 0
Copper 0 0 60 220
Aluminum 0 0 0 1418

according to the obtained clusters. The classification of the
plume-absent region yields to 5 clusters, while the plume-
present classification leads to 4 clusters.

From Figure 8 and Table 1, one can notice that materials
could be sorted into three different families: Green grass,
{Aluminum + Copper}, and the other materials of the scene.
This result is consistent with the ground parameters distri-
bution: the surface temperature of the Green grass is lower
than the temperature of other materials (see Figure 2(a)).
Moreover, aluminum and copper are reflective materials,
unlike the other materials (see Figure 2(b)).

Inside the two last families of materials, the discrimina-
tion is quite difficult to achieve. Indeed, the radiances of those
materials are very close. Nevertheless, the performed classi-
fications are rather successful. The Cohen kappa coefficient
is equal to 0.61 for the plume-absent classification; the latter
equals 0.81 for the plume-present classification. According to
the characterization done by Landis and Koch [27] on the
values of the kappa coefficient, our classifications present a
substantial (0.61) agreement and an almost perfect agreement
(0.81).

3.2.3. Comparison of Background Radiance Estimation Meth-
ods. In order to compare the performance of the three meth-
ods used to estimate the background radiance, four pixels
through the plume were picked out. These pixels, belonging
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(a) (b)

Figure 8: Classification results on the synthetic refinery scene. (a) Plume-absent region. (b) Plume-present region.

Figure 9: Positions of used pixels in the background radiance esti-
mation methods comparison.

to different classes derived from the classification (see Sec-
tion 3.2.2), are figured hereafter in Figure 9. The ground of
these pixels is composed, respectively, of brown sandy loam,
asphalt, aluminum, and copper.

Figure 10 summarizes the results of background radiance
estimation using the three methods: SB, CB, and CSB. For
each of the selected pixels are represented the on-plume
radiance (red), the real off-plume radiance (dotted green),
and the estimation of 𝐿bkg using SB (cyan), CB (blue), and
CSB (magenta).

The cluster of brown sandy loam is the most present
among plume-absent pixels.Thus, the background properties
of the latter are strongly represented in the principal vectors
derived from the PCA. It is therefore obvious that the
SB method gives an accurate estimate of the background
radiance for pixels of this cluster (Figure 10(a)).

Furthermore, the background radiances of asphalt cluster
pixels are pretty close to the background radiances of brown

sandy loam cluster pixels. That is why 𝐿bkg estimate given
by SB approach remains rather effective for this cluster
(Figure 10(b)).

Nonetheless, reflective materials clusters have a back-
ground radiance much far from the main plume-absent clus-
ter, which affects significantly the accuracy of the background
radiance estimation using SB, as we notice in Figures 10(c)
and 10(d).

We observe in these two last figures that, for such materi-
als, SB method reproduces approximately the high frequency
variations. However, there is a component similar to themain
cluster background radiance, which adds up to the estima-
tion.

These curves indicate at one hand that the Selected-
Band approach yields an accurate estimate of the background
radiance, for the pixels of the most represented class among
plume-absent pixels. But on the other hand, for other classes,
the less the class is represented outside the plume, the less
its background radiance is correctly estimated. From these
observations, we deduce that SB method does not manage
well the case of heterogeneous background estimation.

Figure 10 shows that the introduction of a classification
to the background radiance estimation process improves the
results, especially for the minority classes of the scene. For
those pixels (Figures 10(c) and 10(d)), the two classification-
basedmethods (CB andCSB) give amore accurate estimation
than SB does.

One can note that, for pixel 4, there is a slight difference
between the real 𝐿bkg radiance and the estimated one using
CB or CSB. This difference comes from the fact that the class
#4 is not represented at all in the plume-absent region. Thus,
it is assimilated during the classification with the class #3.

Regarding to the pixels 1 and 2, the results of the method
CB are less specific than those of the SB method. Indeed, CB
methoddoes not take into account the intraclass variability by
assimilating to each plume-present pixel the mean radiance
of plume-absent pixels belonging to the same class of the
latter. To this limitation, we must add the errors due to
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Figure 10: Comparison of background radiance estimationmethods, for four different pixels through the plume.The red curves stand for the
on-plume radiances; the dotted green ones are the real background radiances.The cyan, blue, and magenta curves represent, respectively, the
background radiance estimated by the SB, CB, and CSB methods. (a) Results for pixel 1 (brown sandy loam), (b) results for pixel 2 (asphalt),
(c) results for pixel 3 (aluminum), and (d) results for pixel 4 (copper).

the missclassification. Despite these two sources of errors, the
CB background radiance estimation is still acceptable.

Concerning the CSB method, the estimation coincides
perfectly with the real background radiance, for those pixels.
This method manages well the intraclass variability.

In order to have a spatial visualization of the estimation
error of the three compared methods, we illustrated in Fig-
ure 11 themean error of background radiance estimation.This
mean error was expressed in terms of brightness temperature.

Figure 11 upholds the undermentioned results. As
expected, with the SB approach, we obtain a mean error less
than 5K for the classeswhich are themost represented among
plume-absent pixels (#1 and #2). This result confirms the
efficiency of the approach on homogeneous scene. However,

for the two other classes, which are poorly (#3) or not (#4)
represented among the plume-absent pixels, we reach more
than 45K of error.

In the case of Clustering-Based methods, the mean error
obtained for theminority clusters is far smaller than the error
gotten with SB approach. Through class #4 the mean error is
less than 4.5K, both for CB and CSB methods, despite the
fact that the latter is not represented among the plume-absent
pixels.

For the other classes, even class #3 which presents more
than 35K of error with the SB approach, we hardly reach less
than 2.5Kof error (CSBmethod).With theCBmethod, some
pixels have a mean error reaching 5.5K, but those pixels are
very few.
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Figure 11: Mean error of background radiance estimation, expressed in terms of brightness temperature. (a) Mean error obtained with the
Selected-Band estimation method. (b) Mean error obtained with the Clustering-Based estimation method. (c) Mean error obtained with the
Clustering-Based Selected-Band estimation method.

To assess the overall performance of these three methods,
the average error was calculated over the plume. As expected,
the CSB method is the best of the three methods: the mean
error obtained over the plume is equal to 0.48K. With the
CB method, the mean error remains low; it equals 0.80K.
However, the SB method gives a mean error of 9.55K over
the plume. This is explained by the large error of estimation
for classes #3 and #4.

After carrying out the three methods on synthetic data,
we can conclude that CSB approach provides better results
than CB and SB approaches, particularly regarding materials
not well, or not at all, represented among the plume-absent
pixels.

4. Application on Real Data

4.1. Presentation of TelopsHyper-CamAcquisition. TheTelops
Hyper-Cam LW is a lightweight and compact imaging
instrument which uses Fourier Transfer Infrared (FTIR)

technology. The spectral resolution is user-selectable up to
0.25 cm−1 over the 7.7 to 11.7 𝜇m spectral range.The ground-
based Telops Hyper-Cam is installed on a stabilization plat-
form equipped with a global positioning system (GPS) and
inertial motion unit (IMU). In a FTS imaging system, signal
modulation is achieved using a Michelson interferometer.
Acquiring a full interferogram typically lasts about one
second. Therefore, an image motion compensation mirror
uses GPS/IMU data to compensate efficiently for the aircraft
movements during data acquisition.

This flight was carried out using a Hyper-Cam LW sensor
at an altitude of 685meters and a speed of 110 knots leading
to a ground pixel size of 0.057m2/pixel. A spectral resolution
of 6 cm−1 was used which gives a total of 90 spectral bands
equally spaced over the whole range cover by the focal pane
array detector. Outside temperature, wind speed, and relative
humidity at ground level were 21∘C, 15 km/h, and 37%,
respectively.
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Figure 12: Illustration of subimage and pixels used in the background radiance estimation methods comparison.
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Figure 13: Ethylene release detection. (a) Absorptive coefficient spectrum of ethylene (from PNNL). (b) Plume detection mask for Telops
parking scene.

Airborne hyperspectral infrared measurements were car-
ried out above a pure ethylene gas released. Ethylene is a
flammable gas massively used worldwide in the production
of many polymer materials. During this experiment, gas was
released at a constant flow rate of approximately 20 L/min.

4.2. Ground Radiance Estimation. Since the ethylene plume
covers a ground composed entirely of asphalt, we reduced the
size of the image to be processed, in order to limit the number
of classes obtained in the plume-absent area. This 100 × 100
subimage is represented by the red square in Figure 12.

4.2.1. Ethylene Presence Detection. The SMF algorithm was
applied on the Telops acquisition in order to define the
ethylene release spatial extension. The ethylene’s absorbance

curve, illustrated in Figure 13(a), was used tomodel the target
vector T (see Section 2.1).

A plumemask (Figure 13(b)) is obtained after the applica-
tion of a threshold on the abundances image 𝛼. In addition,
we performed a morphological opening operation, in order
to take away the detection artifacts.

Unfortunately the applied morphological opening
removes some plume-present pixels, which are localized at
the frontier of the plume.

4.2.2. Classification of Telops parking Scene. Asopposed to the
synthetic scene case, we cannot have a quantitative evaluation
of the classification. Thus, only a qualitative description of it
is given thereafter.

On this acquisition performed around 11 a.m., one can
notice the presence of a temperature gradient along the
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Figure 14: Classification results on Telops parking scene. (a) Plume-absent region. (b) Plume-present region.

southeast to northwest direction. Indeed, the sun,while rising
in the sky, heated gradually the scene.Thus, even if two pixels
are composed from the same material, they could have two
different ground temperature, according to their location in
the scene. Consequently, those pixels should be classified into
two different clusters.

Figure 14 shows the classification results obtained on
Telops’ parking scene.The classification on the plume-absent
region is illustrated in Figure 14(a), while the classification
involving the plume-present region is illustrated in Fig-
ure 14(b).

The plume-present region was clustered into 3 classes,
while the plume-absent region was clustered into 57 classes.

From these two figures, we notice that the classifica-
tion complies with the temperature gradient. Note however
that the classification in the plume-present region is more
accurate than the second classification. Indeed, the plume-
absent classes corresponding to the plume-present classes #2
(yellow) and #3 (brown)weremerged into the same class.This
can be explained by the fact that we used a threshold on the
size of class (𝐷max) higher in the plume-absent case, in order
to reduce the number of classes.

4.2.3. Comparison of Background Radiance Estimation Meth-
ods. For this scene, we do not have any a priori knowledge
of the background radiance. But, by observing the scene, we
can notice that it seems to be homogeneous along the vertical
direction. In other words, it is justified to assume that 𝐿bkg
is vertically constant. Hence, for a given plume-present pixel,
we approximate its background radiance by the mean spectra
of some plume-absent pixels located at the same column than
the latter. This radiance will be designated by the term ⟨𝐿off⟩.

Figure 15 shows the results of background radiance
estimation using the three methods: SB, CB, and CSB. For
the three selected pixels, we figured the on-plume measured
radiances (red curve), the expected off-plume radiances
(dotted green curve), and the estimation of 𝐿bkg using SB
(cyan), CB (blue), and CSB (magenta).

The first point we can deduce from Figure 15 is the
relevance of the radiance ⟨𝐿off⟩ to model the background
radiance. One can notice that it agrees quite well with the on-
plume radiance on bands where the absorbance of ethylene is
close to zero.Moreover, the difference between ⟨𝐿off⟩ and 𝐿on
on bands of ethylene absorption follows the same variation
then the absorption curve of ethylene.

For the three chosen pixels, the background radiance
estimation obtained by both CB and CSB methods is rather
consistent with ⟨𝐿off⟩. Nonetheless, the SB estimate does not
match well with the expected radiance. For pixels #1 and #2
SB approach underestimates the background radiance, while
it overestimates 𝐿bkg for pixel #3.

Those estimation errors are distributed over the whole
spectral range.They are more important for ethylene absorp-
tion features.

So as to get an idea of the error magnitude for each
method, two parameters measuring this error with respect to
the expected radiance were defined: the root mean square of
the brightness temperature error (𝜎

𝑇b
) is calculated, for each

pixel, as follows:

𝜎
𝑇b
(K) = √ 1

𝑁B
⋅ (𝑇bkg − ⟨𝑇off⟩) ⋅ (𝑇bkg − ⟨𝑇off⟩)

𝑇

, (10)

where 𝑇bkg is the background brightness temperature esti-
mated by one of the three methods, for the concerned pixel.
⟨𝑇off⟩ is the expected background brightness temperature, for
pixel in question.

Moreover, we define the relative root mean square error
on radiance (𝜎

𝐿
) by

𝜎
𝐿 (%)

= √
1

𝑁B
⋅ (

𝐿bkg − ⟨𝐿off⟩

⟨𝐿off⟩
) ⋅ (

𝐿bkg − ⟨𝐿off⟩

⟨𝐿off⟩
)

𝑇

,

(11)
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Figure 15: Comparison of background radiance estimationmethods, for three different pixels through the plume.The red curves stand for the
on-plume radiances; the dotted green ones are the expected background radiances.The cyan, blue, andmagenta curves represent, respectively,
the background radiance estimated by the SB, CB, and CSB methods. (a) Results for pixel 1, (b) results for pixel 2, and (c) results for pixel 3.

where 𝐿bkg is the background radiance estimated by one of
the three methods, for the concerned pixel.

We figured the obtained results, for each of the three
pixels, in Table 2.

Table 2 validates the conclusions deduced from Figure 15.
The SB method gives a less accurate estimation than the
Clustering-Based methods. If for pixel #1, the mean error
calculated is three times higher with the SB method, it
becomes ten times higher for pixels #2 and #3. Otherwise,
the CBmethod has a background radiance estimation almost
as similar as the CSB method estimation. Beside for pixel #1,
the estimation obtained by the CB method is better than that
obtained by CSB method. Moreover, the average error of all
plume-present pixels is equal to 0.64K for the CB method,
while it is equal to 0.68K for the CSB method. However the
two methods remain of the same order of magnitude.

Recall, nevertheless, that ⟨𝐿off⟩ is just an approximation
of the real 𝐿off . Thus, the result presented below does
not induce necessarily that CB method is better than CSB
method.

Figure 16 illustrates a comparison of different radiances
at the ethylene most absorptive band (950.4 cm−1), for pixels
along a horizontal cross section. Pixels from 35 to 55 are
plume-present pixels. Therefore, the radiances comparison is
restricted to those pixels.

Figure 16 shows that the SB approach miscalculates the
background radiance, comparing to the other methods. On
a part of plume-present pixels, it overestimates 𝐿bkg, while it
underestimates this term on the other parts of plume-present
pixels.The estimation error reaches atmost 10%for this band.
Recall that this band is the most important for the ethylene
quantification (see Figure 13(a)).
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Table 2: Evaluation of the difference between expected background
radiance and estimated background radiance, using one of the three
methods used in this paper. The first table presents the root mean
square of the brightness temperature error (𝜎

𝑇b
), while the second

summarizes the results in terms of the relative root mean square
error on radiance (𝜎

𝐿
).

(a)

𝜎
𝑇b
(K) Selected pixels

1 2 3
SB 1.96 3.32 3.94

CB 0.36 0.44 0.46

CSB 0.5 0.29 0.4

(b)

𝜎
𝐿
(%) Selected pixels

1 2 3
SB 3.1 5.06 6.21

CB 0.55 0.69 0.68

CSB 0.95 0.5 0.67
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Figure 16: Comparison of different radiances at the ethylene
absorptive band (950.4 cm−1), along a horizontal cross section
containing some plume-present pixels. The red curve stands for the
on-plume radiances; the green dotted one is the expected back-
ground radiances. The cyan, blue, and magenta curves represent,
respectively, the background radiances estimated by the SB, CB, and
CSB methods.

As expected, the radiance estimated using CBmethod is a
constant piecewise function.We can see that, for the first class
(from the left), the estimated radiance is consistent with the
mean of the expected radiance (⟨𝐿off⟩) of concerned pixels.
But for the second class, which is the result of merging of two
classes (see Figure 14), the estimated radiance does not match
perfectly with the mean of ⟨𝐿off⟩. Using a better classification
of the plume-absent region, it is possible to sort this second
class into two classes, which improves the estimation yielded
by CB method.

In Figure 16, we observe that CSB method takes into
consideration the intraclass variability, which allows getting
better estimation with this method than CB method. For
the concerned band, CSB method does not exceed 3% of
estimation error.

In order to generalize those observations to the all plume-
present pixels, we illustrated in Figure 17 a comparison of
the background radiance estimation obtained by each of the
three methods. This comparison is performed at the band
950.4 cm−1.

One can notice that at the frontier of the plume, some
plume-present pixels have a relatively low radiance (dark
pixels). This is due to a bad plume detection in this region as
we already explained it above. For those pixels, the radiance
represented in Figure 17 is 𝐿on and not 𝐿bkg.

Figure 17(a) shows that SB method overestimates the
background radiance on a part of plume-present pixels
(bright area of the plume). On another part of plume-present
pixels, 𝐿bkg is underestimated (dark area of the plume). This
is due to the presence in the plume-absent region of more
or less shinny materials than the plume-present pixels. The
signal of those materials is then integrated in the principal
components derived from the PCA.

The Clustering-Based methods use only the signal of
plume-absent pixels having the same background properties
than the plume-present pixels. The use of only pertinent
information for the background radiance estimation there-
fore allows improving its accuracy.

This is clearly visible in Figure 17, since we note a certain
homogeneity between the value of the plume-present and the
plume-absent radiance.

4.3. Gas Concentration Estimation. From the scene described
in Figure 12, we first compute an atmospheric compensation;
then we apply a linear algorithm to estimate ethylene concen-
tration for each background estimation.

Atmospheric compensation stage has two goals: first it
aims to avoid the introduction of a probable bias from
atmospheric nontarget gases on the retrieval; then it allows
the estimation of the atmospheric ground level tempera-
ture and water vapor concentration. We assume here that
atmosphere properties are homogeneous over the scene. We
applied a Spectral Smoothness (SpSm) algorithm [28, 29] on
a homogeneous subimage to estimate atmospheric profiles
(temperature, water vapor), surface emissivity, and surface
temperature.

The SpSm algorithm from a set of initial guess is used to
reduce retrieved emissivity spectral variability on homoge-
neous area of concrete material. The initial set is composed
with an atmospheric profile of temperature and water vapor
from “Quebec meteorological center” fitted with local mea-
surement (294.15K for atmospheric ground temperature and
37% for relative humidity) and ground temperature obtained
from the highest value of spectral brightness temperature
measured on the scene. We use 150 tiny variations of atmo-
spheric profiles and 150 different ground level temperatures to
find the optimal set of parameters which leads to low spectral
variation of retrieved spectral emissivity. For this concrete
subimage the corresponding retrieved spectral emissivity is
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Figure 17: Comparison of the three background radiance estimations according to the band 950.4 cm−1, where the ethylene absorbance is
the most important. (a) Selected-Band approach. (b) Clustering-Based method. (c) Clustering-Based Selected-Band method.

shown in Figure 18. The corresponding ground temperature,
ground level atmospheric temperature, and water vapor con-
centration are, respectively, 316.5K, 296.6K, and 10200 ppm.

From this atmospheric profile we compute atmospheric
transmission and atmospheric radiance used for the atmo-
spheric correction pixel by pixel.

Finally, the simple quantification algorithm used is from
a linear model of the differential signature:

ΔL = Lon − Loff = 𝜌 ⋅ A (𝜆) ⋅ (B (Tplume,𝜆) − Loff) , (12)

where Tplume is the plume temperature, 𝜌 is the column
integrated concentration (ppm⋅m), and B(T,𝜆) is the Planck
function. One can estimate the concentration applying for
each pixel by the following equation:

𝑇 = A (𝜆) ⋅ (B (Tplume,𝜆) − Loff) ,

𝜌 =
T𝑇Σ−1X ΔL
T𝑇Σ−1X T

.

(13)
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Figure 18: Mean ground spectral emissivity retrieved through the
subimage.

Plume temperature is assumed to be homogeneous and
equal to ground level atmospheric temperature estimated
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Figure 19: Retrieved ethylene concentration (ppm⋅m) from the three estimated Loff images. (a) Selected-Band approach. (b) Clustering-Based
method. (c) Clustering-Based Selected-Band method.

to be 296.65K. One can notice than neither pixel-by-pixel
emissivity nor ground temperature is needed here to estimate
gas concentration.

The different stages described above are applied to the
estimated Loff images shown in Figure 17.

Figures 20 and 19 shows ethylene concentration retrieved
from Hyper-Cam data using the three estimated background
methods outlined above and their differences. The mean
retrieved integrated concentration is about 200 ppm by CSB
method. One can notice that ground radiance main differ-
ences are translated into retrieved concentration differences.
In particular, the upper left corner of the plume where the
background radiance was overestimated by about 10% by
SB method leads to the highest differences in concentration
(up to 200 ppm⋅m). Then, class borders used for CB method
where radiance difference was the highest with CSB method
lead to local differences of about 40 ppm⋅m. The mean
difference between CB and CSB methods is less than 10%
in concentration whereas it climbs up to 20% between SB
and CSB methods. As pixel ground level size is about 23 cm

the plume mean width size 𝑙 orthogonal to wind direction is
calculated to 4m and average mass in one-meter long slice of
the plume is calculated to be 0.986 g assuming ethylenemolar
weight wm of 28 g/mol. The flow rate 𝑑 can be estimated
to be 4.2 g/s assuming a wind speed value of 4.3m/s and
using the following equation where 𝜌 (in ppm⋅m) is the mean
integrated column concentration in an orthogonal slice of one
meter thick and 4mwidth. This results fits well with the true
value of 20 L/min which corresponds to 3.15 g/s assuming
that ethylene volume weight is 567.65200 kg/m3:

𝑑 = 𝜌 ⋅ 𝑙 ⋅ 10
3
⋅
𝑤𝑚

22.71
. (14)

5. Summary and Conclusions

Gas trace plume remote sensing above industrial scene
requires both high spectral and spatial resolution. Using
airborne FTS imaging techniques it becomes possible to
detect and quantify gas traces. However retrieval accuracy
depends on both pixel-by-pixel background under plume
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Figure 20: Comparison between retrieved concentration from the different approaches. (a) Difference between retrieved concentration from
SB background estimation and CSB background estimation. (b) Difference between retrieved concentration from CB background estimation
and CSB background estimation.

estimation and good enough spectral resolution around
target gas absorption peak. In this paper we propose a
method to estimate ground radiance pixel by pixel taking
into account scene variability spectral behavior. The CSB
method described above is a Clustering-Basedmethodwhich
aims to associate statistical spectral properties from classes
nonimpacted by the plume to classes below the target gas
plume. This method is based on SB method algorithm [18]
extended to a clustering approach. We have shown that
introducing an initial classification of the scene improves
background radiance estimation for nonhomogeneous scene
in comparisonwith classical SBmethod or simple Clustering-
Based method. Results based on simulations showmore than
10K in brightness temperature for low emissivity material
and up to 3K for high emissivity material.

The CSB method applied to airborne Hyper-Cam LW
data acquired above an ethylene release of 20 L/min shows
that the CSBmethod can reduce background radiance uncer-
tainty from 5 to 1% or from 3 to 1 K in terms of brightness
temperature uncertainty, for a high emissivity materiel such
as concrete. This improvement leads to a mean difference of
about 10%on ethylene plume retrieved concentrations in this
particular “easy” scene.

Finally we propose in this paper an end-to-end method
using a single hyperspectral image to estimate (i) ground
radiance and properties (emissivity and temperature); (ii)
atmospheric ground level temperature and water vapor
content; and (iii) trace gas plume concentration with an
encouraging accuracy. Indeed the retrieved flow rate is close
to mean flow rate during the gas release.

The method outlined above must now be tested on
industrial scenes where expected improvement should be
higher as it deals well with a very high number of materials,
with intraclass variability such as shadow and temperature
gradient and with low emissivity materials.

Symbols

Plume Detection

𝑁: Number of pixels
𝑁B: Number of spectral bands
X: Hyperspectral image matrix
[𝑁 × 𝑁B]. X could represent radiance
(L) or brightness temperature (𝑇b)

x: A pixel of X
⟨x⟩: Mean spectrum of X
ΣX: Covariance of X
T: The gaseous target spectrum
𝛼: Target fit coefficients (abundances)
d: Residual vector.

Selected-Band Approach

𝑁on: Number of plume-present pixels
𝑁off : Number of plume-absent pixels
𝑁SB: Number of selected bands
𝑁p: Number of the used principal components
𝐿on(𝜆): On-plume radiance: measured radiance

for a plume-present pixel
𝐿off (𝜆): Off-plume radiance: measured radiance

for a plume-absent pixel
𝐿bkg(𝜆): Background (plume-free) radiance for a

pixel.

Classification

𝐷max: Threshold on the size of a class
𝑁C: Number of classes without plume
𝑁CP: Number of classes containing plume.
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